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Abstract - -  Zusammenfassung 

Yet Another Application of a Binomial Recurrence. Order Statistics. We investigate the moments of the 
maximum of a set of i.i.d geometric random variables. Computationally, the exact formula for the 
moments (which does not seem to be available in the literature) is inhibited by the presence of an 
alternating sum. A recursive expression for the moments is shown to be superior. However, the recursion 
can be both computationally intensive as well as subject to large round-off error when the set of random 
variables is large, due to the presence of factorial terms. To get around this difficulty we develop accurate 
asymptotic expressions for the moments and verify our results numerically. 

Key words: geometric distribution, order statistics, binomial recurrence, asymptotic approximation, 
program unification, concurrency enhancement. 

Eine weitere Anwendung binomischer Rekurrenz. Orderstatistik. Wir untersuchen die Momente des 
Maximums einer Menge von unabh/ingig identisch verteilten geometrischen Zufallsvariablen. Nume- 
risch ist die Verwendung der exakten Formel fiir die Momente (die iiberdies in der Literatur nicht 
erscheint) wegen des Vorhandenseins einer alternierenden Summe nicht ratsam. Ein rekursiver Ausdruck 
f/ir die Momente ist besser geeignet. Jedoch kann die Rekursion wegen des Auftretens yon faktoriellen 
Ausdriicken sowohl viel Rechenaufwand erfordern als auch groBe Rundungsfehler verursachen, wenn 
die Menge der Zufallsvariablen groB ist. Zur Oberwindung dieser Schwierigkeiten entwickeln wit 
genaue asymptotische Formeln fiir die Momente und verifizieren unsere Ergebnisse numerisch. 

1. Introduction 

In this paper, we present some results concerning the maximum order statistic M,  
of n independent and identically distributed geometric random variables. We first 
develop a recurrence, and then an exact formula for the mean and variance of this 
order statistic. To the best of our knowledge, these results appear  to be new (see, for 
example [2, 3]). The exact formula for the first two moments  of this order statistic 
is computationally unsatisfactory, since it involves an alternating sum. The recur- 
rence is computationally sound, but due to the presence of a factorial term, is not 
to be recommended for very large values of n. In order to get around this barrier, 
we develop asymptotic forms for all the moments  of this order statistic. In particular, 
we present extremely accurate asymptotic results for the mean and variance of M,.  

* This research was partially supported by NSF under grants NCR-8702115 and CCR-8900305. 
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The motivation for this study came from a model of a program unification technique 
in concurrency enhancement methods [6]. The unification technique essentially 
combines n copies of a poorly vectorizable piece of code into a single, vectorizable 
piece of code. The average speedup of the single piece of code, when run on a 
vector/concurrent machine such as the Alliant FX/80 can be shown to be significant 
[6]. In particular, consider the case of programs that are composed of strings of 
iterative blocks. A simple nondeterministic model of program behaviour suggests 
that each program block goes through a random number of iterations, where this 
random number is geometrically distributed. Executing a unified iterative program 
block, under the geometric model, is like watching n simultaneously initiated, 
independent, and identical geometric random variables expire, with the execution 
time of the unified block taken to be the largest of these times. If the original piece 
of code contains many types of blocks, the unified piece of code will also contain 
this many block types, but the limited number of processors on the target machine 
dictates that efficient scheduling policies are required for efficient execution of the 
unified code. Studying average speedup for large values of n for most models, in 
particular the geometric, takes us into the study of asymptotics. 

The simplest model of the unified execution scheme is the following. Consider a set 
ofn  balls placed in an urn at time k = 0. At each discrete time step k, k > 1, we are 
required to pick up all the balls in the urn and toss them into the air. For  each ball 
that is tossed, and for each value of k, there is nonzero probability p that the ball 
will fall out of the urn, for k > 1. Balls that fall out of the urn are ignored. We are 
interested in the number of tosses that is required to empty out the urn. The number 
of tosses required for any one ball (say that i *h) to fall out of the urn is given by a 
geometric random variable Xi. We assume the balls do not influence one another 
when tossed, so that the random variables X,, 1 < i _ n, are i.i.d. It follows that 
the number of tosses required to empty the urn is precisely the maximum, Mn = 
max {X1, . . . ,  Xn}, of this set of random variables. The original model in [6] investi- 
gates the situation where the number of urns is variable, and different rules may be 
used when choosing urns from which throws are to be made. In this paper we restrict 
our attention to Mn and accurate asymptotics for its moments. 

In Section 2.1 we present the problem formally and prove a proposition concerning 
the exact solution and asymptotic approximations for the first two moments of M,. 
In the next two subsections we prove the main results, that is, in section 2.2 we 
develop a general solution to some binomial recurrences, and in section 2.3 we 
present an asymptotic solution for some alternating sums, and apply it to our 
problem. Finally, in section 3 we briefly present some computational results demon- 
strating the accuracy of the asymptotics, and conclude the paper. 

2. Main Results 

In this section, we present our main results. We start with a short, but formal, 
description of the problem, and we formulate our main results in the form of a 
proposition. In the next two subsections we provide a proof of the proposition. 
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2.1. Problem Statement 

Let Xi, i = 1, 2 . . . .  , n be a set of i.i.d r a n d o m  variables distributed according to the 
geometric distribution with parameter  p. That  is, for every i = 1, 2 . . . .  , n, 

Pr{X i = k} = (1 - p)k-lp, k = 1, 2 . . . .  , (2.1a) 

EX, = p - l ,  EX 2 = (2 -- p)p-2 (2.1b) 

We shall investigate, in particular, the first two moments  of  the max imum of 
X1, X2, . . . ,  X,. Let  

M ,  = max{X1, X2, . . . ,  X,} (2.2a) 

and define 

M,  = E M , ,  M,  ~2) = E M  2 (2.2b) 

Then, M,  and m (2), as  we shall show below, satisfy the following recurrences 

Mo = 0 Mi  = p-1 (2.3a) 

k=0 

and 

Mto z) = 0 M~ 2) = (2 - p)p-2 (2.4a) 

To derive (2.3) and (2.4), we adopt  a slight variat ion of  the urn scheme discussed in 
the introduction.  The intention is obtain an intuitive view of M, .  Let us assume that  
n balls are put into n distinct urns, with one ball in each urn. The action of all urns 
is synchronized in the sense that  at the beginning of  a slot time (e.g., every second) 
each nonempty  urn at tempts to get rid of  its ball by tossing it into the air. For  each 
ball tossed, the ball falls out  of its urn with probabil i ty p, and falls back into its urn 
with probabil i ty q = 1 - p. Each urn acts independently of the other urns. Note  
that M ,  defined in (2.2a), is equal to the number  of slots needed to empty all urns. 

After the first slot we have k nonempty  urns, with probabil i ty k (1 - p)kp,-k and 

the time to empty these is equal to M k. This suggests the following recurrence for 
the l-th momen t  EM~ of M ,  

(2.5) 
k=O 

Solving (2.5) for l = 1 and 2, one finally obtains our  recurrences (2.3) and (2.4). 

Using recurrences (2.3) and (2.4), we prove our  main  results, which can be sum- 
marized as follows. 
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Proposition. (i) The exact solution for the first moment M,  of M ,  is 

k=l k 1 -- qk (2.6) 

where q ~f 1 -- p, and for the second moment we obtain 

k=l 1 qk ~ qk)2 (2.7) 
- k = l  ( 1  - -  

( i i )  For large n the following asymptotics hold for the average M, of M ,  

log n 7 1 
M, - logQ + ~ + 2 + P~176 + O(n-~) (2.8) 

and for the variance of M, ,  

rr 2 1 
var M ,  - 6 log2Q + i 2  + F(logQ n) (2.9) 

where log denotes the natural logarithm, Q ~fq-1 and 7 = 0.577.. .  is the Euler 
constant. The fluctuating functions Pr(x) and F(x) are defined as follows, with 
Zk ~f 2rcik/log Q, k = O, +_ 1 . . . . .  

1 
F(r + zk)exp[--2rtikx] r = 0, + 1, + 2  . . . .  (2.10) P~(x) - log O g= -~o - ' 

k~O 

and F(x) = G(x) + 2"P t (x  ) - p2(x) where 

1 
~, [F(--Zk) ' logen -- F'(-Zk)]exp(27tikx) (2.11) G(x) - log 2 Q k =-oo 

k#0 

and F(x) is the gamma function [1]. 

(ii) The k-th moment EM k of M ,  becomes for large n 

E M  k = log~ n + O(log k-1 n) (2.12) 
[ ]  

The rest of the paper  is devoted to proving the proposi t ion and demonstra t ing the 
accuracy of the asymptot ic  results. Before that, however, we offer some additional 
remarks concerning the fluctuating function P,(x) and the term O(n -1) in (2.8) and 
(2.9). 

Remarks 
(i) The fluctuating function P~(x) was studied by Knu th  [5] and others [4], [7], [9]. 
In particular, the following properties of the function can be easily established: 

�9 P~(x) is periodic function of logQ n. Indeed, P~(logQ n. Q) = P~(log n). 
�9 The function is bounded.  This is proved by using the following properties of the 

gamma function [1], [4] 

7~ 

]F(it)12 t s i nh~ t  ' F(z + 1) = z F(z) 
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�9 F o r  any  fixed ~ we have Pr(log n - ~) = PrOog n) + O(~ -1) since log(n - ~) = 
logn  + O(~ -1) 

As a consequence of the second p roper ty  we m a y  est imate the function P,(x). In 
part icular ,  K n u t h  [5, p. 612] compu ted  the upper  bound  ffl (logQ n) for the function 
1~ (x), and  the table below summarizes  the results. 

Q P~(logQn) 

2 0.000000175 
3 0.00004122 
4 0.000296 
5 0.00085 

10 0.0063 
100 0.068 

1000 0.153 
1000000 0.341 

This table, as well as the above  established properties,  suggest tha t  the periodic 
function Pr(x) has very small ampli tude,  and  can be safely ignored in practice, if one 
uses (2.8) and (2.9). 

(ii) The  te rm O(n -1) can be el iminated f rom the asympto t ic  expansions  (2.8) and 
(2.9), and the accuracy of these formulas  can be reduced to O(n -M) for arbi t rary  
M > 0, as explained in [9]. In  such a case, the te rm log n should be replaced by  the 
ha rmonic  n u m b e r  H n = ~ '=1  1/n [9]. If  one develops the ha rmonic  n u m b e r / 4 ,  into 
an asympto t i c  expansion,  then Hn = log n + 7 + 1/2n + O(n -2) [5], hence the te rm 
O(n -1) comes out. Since the constant  1/n is small, the cont r ibut ion  of the te rm O(n -1) 
to the error  is very small for large n. 

2.2. Exact Solution 

In this subsection, we prove  par t  (i) of the proposi t ion.  Note  that  both  recurrences 
(2.3) and (2.4) fall into the following general recurrence: given x o and x 1, solve for 
n_>2  

x " = a " +  ~ (~)  (2.13) 

where p + q = 1, and  an is any sequence of numbers  which we further call an additive 
term of the recurrence (2.13). In  our  case an = 1 for  (2.3) and  an = 1 + 2M. for  (2.4). 
This type of recurrence was extensively studied in [7, 8] (see also [5]). We quote  
some results f rom [7, 8] here. 

Let  us define a sequence d,, called b inomial  inverse relat ions [5], as 

4, = ( -  1) k ak an = (--  1) k a k (2.14) 
k=O k k=O 

Then,  
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Lemma 1. (i) The  recurrence (2.13) possesses the fo l lowing  solution 

x = X o +  ~ ( - 1 ) k ( ~ )  d t k + k A - a ~  k=a 1-~q ~- (2.15) 

where A = a a - xap  - Xoq. 

(ii) The  inverse ~ ,  o f  x ,  satisfies 

4. + nA  - a o 
~, - n > 1 ( 2 . 1 6 )  

1 - q "  

Proof .  The details are given in I-7]. Here we offer only sketch of the derivation for 
Z n 

the completeness of the presentation. To prove (2.15), we multiply (2.13) by ~ and 

computing the exponential generation function X ( z ) =  x , ~ .  we obtain the 
n=O - 

following functional equation 

X ( z )  - X ( q z ) e  (l-q)z = A(z)  - a o - A z  (2.17) 

where A(z)  is the exponential generation function for a,. Introducing I t ( z ) X ( z ) e  -~ 

we transform (2.17) into 

I t (z )  - I t (qz )  = A(z )e  -z  - aoe -z  - A z e  -z  

This functional equation is easy to solve by consecutive iterations. Noting, in 
addition, that 4, has generating func t i on / l ( - z )  = A(z )e  -~ we prove, after some 
algebra, Eq. (2.15). The proof of (2.16) is immediate by comparing (2.15) with the 
definition (2.14). [] 

Using our Lemma 1, the solution of (2.3) is simple, since one computes 4. = 3,,o, 
where 6,, o is the Kronecker delta [5], and A = 1 - M a p  = 0. Hence (2.6) follows. 
To solve (2.4) we need the inverse 3'/, of M,. But, from (2.6) and (2.16) we find 
M, = - (1  - q.)-i for n > 1, and then (2.7) follows from Lemma 1 and some simple 
algebra. 

2.3. Asymp to t i c  approx imat ion  

The exact solutions given in Proposition (i) are not attractive from a numerical 
viewpoint. In fact, to compute M, and M~ 2) one would do well to use the recurrences 
(2.3) and (2.4) instead of the cxact solutions (2.6) and (2.7). Nevertheless, the exact 
formulas allow us to obtain very sharp asymptotic approximations which become 
numerically important for large n due to factorial terms in the recurrences. 

Note that formulas (2.6) and (2.7) fall into the general pattern 

where fk is any sequence. It turns out to be useful to plug into complex analysis to 
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obtain asymptotics of (2.18) [5], [9]. Let us assume that fk has an analytical 
continuation f(z), and f (z)  does not grow too fast to infinity (for detailed conditions 
see [9]), that is, f (k)  = fk. In [9], we have proved 

Lemma 2. The alternating sum S, as defined in (2.18) can be represented by a complex 
inteoral as follows 

1 f-llz+i~ 
= I ' ( z ) f ( -  z)n -z dz + e. (2.19) 

S. j-i/2-1= 

where f ( z )  is the gamma function [1, 4], and e, is the error function given by 

f 
- 1 / 2 + i o v  

e, = O(n -1) zF (z ) f ( -  z)n-= dz (2.20) 
d -1/2-ioo 

Proof. Formula (2.19) follows from Cauchy's theorem [4], and some algebraic 
manipulation. [] 

To apply Lemma 2, by Cauchy's residue theorem, we find residues of the function 
under the integral right of the line ( -  1/2 - log, 1/2 + log). Then 

~ ( - - 1 ) k ( ~ ) f k  = -  ~ re s {F( zk ) f ( - - z k )n -~k )+e ,+O(n  -u )  (2.21, 
k = l  k = - o o  

for any M > 0, and the sum is taken over all poles Zk, k = 0, • 1, • 2 . . . . .  of the 
function under the integral (2.19). 

To illustrate Lemma 2, we apply it to the asymptotic analysis of M, and M, ~2). 
From (2.6) and (2.19) one finds 

1 f - m + i ~  F(z)n-Z + = ~ r e s  ~If(Zk)n-Zk-~ M. 
-2rt--i .)-1[2-ioo i ~ - ~ a z  e, ~ + e, 

But, the poles z k are the roots Zk of the denominator, that is, 

2nik 
Zk - log Q k = 0, • 1, . . . .  (2.22) 

It is well known that the leading factor in the asymptotics comes from k = 0. In fact, 
Xo = 0 is a double pole, since zero is also a pole of the gamma function [1,4]. To 
compute the residue at Xo = 0, we use the following Taylor expansions [1] 

F(z) =- z -~ - 7 + O(z) (2.23a) 

n -~ = 1 - z logn + O(z 2) (2.23b) 

1 z -1 1 
1 - q - ~ -  logq_ a b ~ + O ( z )  (2.23c) 

Multiplying (2.23a) through (2.23c) and finding the coefficient at z -1 leads to the 
residue at Xo = 0. That is, 

res_ ~-/'-(x~176 log n ~ - ~  1 
1 -  q- o j =lo-  logQ 
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where Q = q-1. The other poles, that is, Zk for k # 0, contribute to the periodic 
function Po(x) defined in (2./0) (see Remark (i)). The error function e, contributes 
O(n -1). Indeed, it is enough to apply the residue theorem, and to see that the integral 
in (2.20) is O(1). 

The evaluation of M (2) is a little more intricate. Noting that M~. 2) = - M .  + D., 
where 

k=l k qk)2 (2.24) 

and the asymptotics for M, have already been computed, we focus our attention on 
D,. An application of Lemma 2 yields 

2 
1), = - - - -  + Pl(n) + O(n -1) (2.25) 

log Q 

where 

1 
F(1 + 2rcikflogQ)exp[-2zciklogen] /~ (n) - log Q k= - o~ 

k#0 

Now, for D, we immediately obtain from Lemma 2 

1 f-1/2+i~ F(z)n-Z 
1), = ~ j-1/2-io~ i 1 - q-Z) zdz (2.26) 

But, this time the pole Zo = 0 is a triple pole of the function under the integral. This 
case was extensively studied in [8], and we show there that the following expansions 
must be used 

r(z) = z - 1 -  ~ + ~ + ~ z + O(z 2) 

Z 2 

n -z = 1 - z logn + ~-logZ n + O(z 3) (2.27) 

(1 -- q-~)z = zZ(bo + blz + b2z 2 + O(z3)) 

where bo h~, b~ hlh2 and b 2 = 1 2 = = zh2 + �89 h3 and h, = ( -1)"  log" q. In [8] an 
algorithm is given to compute the residue in such a case (note that the last equation 
in (2.27) shows the Taylor expansion of(1 - q-~)2 and not (1 - q-Z)-2). After some 
algebra, and using (2.25), we prove 

M,2) = log2n 2 1 o g n (  7 ~)  , 1 
log2-----Q + log Q \ log Q + + 2fl + F(logQ n) "-" log Q 2 

where fl is given by 

~ - l f n 2  72 3h2 lh3 d- 7h2~ 
fl = h~ ~-i2 + -2 + 4 h~ 3hl  hl J " 

The periodic function F(x) is given in Proposition (ii). Using this and (2.8), we 
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immediately prove (2.9) in Proposition (ii). Finally, formula (2.12) in Proposition 
(iii), is proved in a similar manner. In this case, we consider only the leading factor, 
which corresponds to D, in (2.26) with the denominator replaced by (1 - q-z)k for 
the k-th moment of M.. 

3. Numerical Work 

In the following table, we present the values of Mn and var(M.) for selected values 
of n, 2 < n < 200. Observe that the asymptotics are accurate even for values of n 
below 10. 

Table. (p = 0.25) 

M. Asymptotic var(M.) Asymptotic 

2 5.71429 
10 10.68127 
20 13.00596 
30 14.38682 
40 15.37247 
50 16.13950 
60 16.76754 
70 17.29925 
80 17.76031 
90 18.16732 

100 18.53162 
110 18.86134 
120 19.16258 
130 19.43969 
140 19.69635 
150 19.93533 
160 20.15891 
170 20.36901 
180 20.56712 
190 20.75451 
200 20.93234 

4.91586 
10.51036 
12.91978 
14.32920 
15.32920 
16.10486 
16.73862 
17.27446 
17.73862 
18.14804 
18.51428 
18.84559 
19.14804 
19.42628 
19.68388 
19.92370 
20.14804 
20.35878 
20.55746 
20.74540 
20.92370 

15.18367 
18.80917 
19.36976 
19.56279 
19.66069 
19.71991 
19.75891 
19.78731 
19.80886 
19.82550 
19.83911 
19.85007 
19.85750 
19.86544 
19.87180 
19.87783 
19.88352 
19.88802 
19.89211 
19.89639 
19.89980 

19.95905 
19.95905 
t9.95905 
19.95905 
19.95905 
19.95905 
19.95905 
19.95905 
19.95905 
19.95905 
19.95905 
19.95905 
19.95905 
19.95905 
19.95905 
19.95905 
19.95905 
19.95905 
19.95905 
19.95905 
19.95905 

The absolute error between the asymptotic value of M. and the value given by the 
recurrence is 0.17 for n = I0. When n = 100, the error drops to 0.017, which is a 
tenth of the original error. For  n = 200, the error is 0.008. In this example, the error 
appears to decrease roughly geometrically, halving for every increase of n by a 
hundred. In our proposition we have proved that the error is not larger than O(n-t) 
(see also Remark (ii)). Clearly, when n takes on large values, the recurrence becomes 
impractical, both due to the amount of time required to compute it, as well as 
numerical overflow caused by the computation of factorial terms. The asymptotics 
give accurate values. 

References 

[1] Abramowitz, M. and Stegun, I., Handbook of Mathematical Functions, Dover, New York 1964. 
[2] David, H., Order Statistics. Second Edition, John Wiley & Sons, New York 1981. 



410 Wojciech Szpankowski and Vernon Rego: Yet Another Application of a Binomial Recurrence 

[3] Galambos, S., The Asymptotic Theory of Extreme Order Statistics. John Wiley & Sons, New York 
1978. 

[4] Henrici, P., Applied and Computational Complex Analysis, Vol. 2, John Wiley & Sons, New York, 
1975. 

[5] Knuth, D., The Art of Computer Programming. Sorting and Searching, Addison-Wesley, 1973. 
[6] Rego, V., Mathur, A. P., Exploiting parallelism across program execution: A unification technique 

and its analysis, Purdue University, CSD TR-751, March 1988, to appear in IEEE Transactions on 
Computers, 1990. 

[7] Szpankowski, W., On a recurrence equation arising in the analysis of conflict resolution algorithms, 
Stochastic Models, 3, 89-114, 1987. 

[8] Szpankowski, W., Some results on V-ary asymmetric tries, Journal of Algorithms, 9, 224-244, 1988. 
[9] Szpankowski, W., The evaluation of an alternative sum with applications to the analysis of some 

data structures, Information Processing Letters, 28, 13-19, 1988. 

W. Szpankowski 
V. Rego 
Department of Computer Sciences 
Purdue University 
West Lafayette, IN 47906 
U.S.A. 

Verleger: Springer-Verlag KG, M61kerbastei 5, A-1010 Wien. - -  Herausgeber: Prof. Dr. Hans J. Stetter, Institut f/ir 
Angewandte und Numerische Mathematik der Technischen Universitfit Wien, Wiedner HauptstraBe 6--10, A-1040 
Wien. - -  Redaktion: Wiedner Hauptstral3e 6--10, A-1040 Wien. - -  Satz und Umbruch: Asco Trade Typesetting 
Limited, Hong Kong; Reproduktion und Offsetdruck: Novographic, Ing. W. Schrnid, Maurer-Lange-Gasse 64, A-1238 
Wien. - -  Verlagsort: Wien. - -  Herstellungsort: Wien. - -  Printed in Austria. 


