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Abstract

Lists are ubiquitous in functional programs, thus support-

ing lists efficiently is a major concern to compiler writers

for functional languages. Lists are normally represented as

linked cons cells, with each cons cell containing a car (the

data) and a cdr (the link); this is inefficient in the use of

space, because 5070 of the storage is used for links. Loops

and recursions on lists are slow on modern machines because

of the long chains of control dependence (in checking for d)

and data dependence (in fetching cdr fields).

We present a data structure for “unrolled lists,” where

each cell has several data items (car fields) and one link

(cdr). This reduces the memory used for links, and it signif-

icantly shortens the length of control-dependence and data-

dependence chains in operations on lists.

We further present an efficient compile-time analysis that

transforms programs written for “ordinary” lists into pro-

grams on unrolled lists. The use of our new representation

requires no change to existing programs.

We sketch the proof of soundness of our analysis-which

is based on refinement types—and present some preliminary

measurements of our technique.

1 Introduction

Efficient implementation of lists has always been a major

concern to compiler writers for functional languages, because

they occur so frequently in functional programs. Lists are

normally represented as linked cons cells, with each cons cell

represented by two contiguous memory locations, one for the

car (the data) and another for the cdr (the link). This is

inefficient in the use of space because 5070 of the storage is

used for links. Furthermore, traversing a list requires twice
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as many memory references as traversing a vector. And on

any loop or recursion that traverses a list, there is a long

chain of control dependence as each cdr is checked for nit

and a long chain of data dependence as each cdr fetch is

dependent on the previous one. With modern superscalar

hardware, these dependence are a serious bottleneck.

In order to save on storage for links, “cdr-coding” was

proposed in the 1970’s [15, 13, 8, 9, 6, 5]. Its main idea is

to try to avoid some links by arranging for the second cons

cell to directly follow the car of the first, and to encode that

information in several bits contained in the car field of the

first cell; thus the first cell does not need a cdr field at all.

A depth-first (or breadth-first [4]) copying garbage collector

helps ensure that most lists are arranged sequentially in stor-

age, so they can take advantage of this encoding. Cdr-coding

solves the space-usage problem (and in the MIT version al-

lows random access subscripting of lists [13]), but makes the

control-dependence problem even worse, as the cdr-coding

tag of each car must be checked. Cdr-coding was popular

on microcode Lisp machines circa 1980 [25, 10], but it is

not an attractive solution on modern machines.

Our new “compile-time cdr-coding” method works for

statically typed languages such as ML. Our scheme allows

a more compact runtime representation for lists, but does

not require any runtinae encoding at all. Furthermore, our

encoding allows loops and recursions on lists to be unrolled

much more efficiently than is possible with the conventional

representation for lists.

Our idea is simple: we put k items—but only one link—in

each list cell. We use k = 2 to illustrate our idea. Lists

of even length are simply represented u linked series of our

bigger cons cells; lists of odd length are represented as a

header cell that contains one data element and one link to an

even-length list. Table 1 gives a simple comparison of space

usage between our new unrolled representation (NUR) and

the old standard representation (OSR). In the table, “’a”

represents the data element; “O” and “E” represent the tag

word that is used to distinguish between odd-length and

even-length lists at runtime. We represent the empty list by

“O.” Now we can easily see that for lists with length greater

than 2, the new representation requires 25% less space than

the usual representation. Furthermore, traversing a list in

the new representation requires 25% fewer loads, and 50%

fewer tests for nil on cdr pointers (because NUR has 50%

fewer cdr links).

The new unrolled representation (NUR) promises to be

extremely useful for superscalar or superpipelined machines.

Suppose we use a representation with k items per link. Then
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Length Old Standard Representation Size New Unrolled Representation

o 0 ml
1 A 2 m

2 ~ 4

2n ,,
~--+ 4n +--*

2n+l m--+ 4n+2 ld’4-1444 ,>
+--*

Table 1: Comparisons between standard and unrolled list representations

we can unroll most loops on lists by a factor of k, and over-

lap (using standard software pipelining techniques) the exe-

cutions of the (original) iterations. Such unrolling and soft-

ware pipelining would be much less fruitful if performed on

the standard list representation (OSR) for two reasons: the

tests for nil introduce a chain of k – 1 extra control depen-

dencies, and the fetches of cdr introduce a chain of k – 1

extra memory latencies. These chains are a serious obstacle

to the software pipelining of anything at all! Note that the

fetches of the k car fields (in an unrolled loop using NUR)

can all be done in parallel; this is not possible in the standard

represent ation.

Because programmers will still use the standard list no-

t ation (i.e., each cons cell has one car and one cdr), the

compiler has to do the appropriate translation to utilize the

new unrolled representations. This is possible in a statically

typed langnage such aa ML, because the type of each identi-

fier is statically known at compile time, and computation on

lists is expressed using pattern matching and recursive func-

tions. For example, an integer listz in ML might be concep-

tually represented by the following concrete datatype, which

matches the standard represent ation (OSR) in Table 1:

datatype list = nil I :: of int * list

where “: :” is the infix cons constructor. The well-known

function map might be written as follows using pattern

matching:

fun map f .
let fun m nil = nil

Im(x::r)=(fx) :: (mr)
in u

end

The new unrolled representation (NUR) in Table 1 can also

be expressed by ML concrete datatypes:

datatype list2 = OLIST of int * tai12

I ELIST of tai12

and tai12 . TliIL
I TIIIL2 of int * int * tai12

1The tw~word record representing the NUR empty list @ )
can be shared among all uses of the empty list. This sharing can
be introduced by the garbage collector to avoid complicating the

compiled code, if necessary.

‘In Standard ML [19], lists are declared as datat ypa j a list
=nill :: of ~a * ~a list. To simplify the presentation, we
ornit the type variable ~a by considering only integer lists. All

the results described in this paper easily carry to the polymorphic
case.

I Size I

10’1
3

5

3n+2

3n+3

Here, the data constructors OLIST and ELIST can be thought

of as tags for lists of even length and odd length; they cor-

respond to “O” and “E” in Table 1.

An efficient map function on NUR lists looks like:

fun map) f =
let fun h (OLIST(i, r)) = OLIST(f i, m r)

I h (ELIST&)) = ELIST(m r)
-d m T~IL = TllIL

I m (TAIL2(x, y,r)) = TAIL2(f x, f y, m r)
inh

end

The test for nil (in the pattern-matching for m) is done half

as often. If map> and then f are in-line expanded, then the

evaluations of f x and f y can be overlapped.

Simply unrolling the original map function, without chang-

ing the list representation, is not as attractive because of the

extra control and data dependence:

fun map.unrolled f =

let fun m nil = nil

I m (x::r) =

case r

of nil => (f x) :: nil

I y::s=>(fx) :: (fy) :: (ins)

in m

end

Our static “list unrolling” transformation haa the follow-

ing advantages over the traditional representation, and over

runtime “cdr-coding” techniques:

Loops and recursions on lists can be efficiently unrolled.

Even on “sequential” machines, we avoid many nil tests

and cdr fetches.

Less memory is used for storing links.

There is no extra runtime cost (as is incurred by cdr-

coding) for handling of encoding bits.

Unlike the “cdr-coding” technique that varies with the

dynamic behavior of the program (i.e., cons cells have
to be adjacent), our method guarantees a (k - 1)/2k

savings of space usage for long list structures, using k-

fold unrolling.

The interface with garbage collectors is extremely sim-

ple, since we use ordinary record structures.

Because our transformation only relies on the static

type information that is usually available in module in-

terfaces, it interacts very well with the module system

and separate compilation.
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2 Compiling with Refinement Types

In this section, we formally describe the compil~time analy-

sis and present the translation algorithm that automatically

transforms program written in OSR notations into one that

uses NUR.

First we describe a simple syntactic transformation that

gets us partway to our goal. A simple way to implement

the NUR is to make the compiler interpret the normal “: :”

constructor abstractl~, just as Aitken and Reppy deal with

their abstract value constructors [1]. During the compilation,

the constructor ~unction of “: :”, which takes a data element

and a list, and returns a list (the “cons” of the two), can be

implemented as the following function ucone:

fun ucons(x, OLIST (i,r)) = ELIST (TAIL2 (x, i, r))
I ucons(x, ELIST r) = OLIST (x, r)

The cfecorastructor function (also called projection) of “: :”,

which takes a non-empty list, and returns the head and the

tail of the list, can be implemented as the following function

uproj:

fun uproj (OLIST (i, r)) = (i, ELIST r)
I uproj @LIST (TAIL2 (i, j,r))) = (i, OLIST (j, r))

This approach is extremely easy to implement in most com-

pilers. But it can cause two kinds of runtime inefficiencies

when traversing or building a list (such aa the map function):

Both ucons and uproj need to check the length parity

of a list each time they are applied, while the old “: :”

requires no check.

To build a list using ucons, one must alternately allo-

cate an OLIST cell (e.g., OLIST( j ,r) ) on the heap, dis-

card an ELIST cell, then take out j and r, build an ELIST

cons cell (e.g., ELIST (TAIL2 (i, j ,r) ) ), and discard the

OLIST. This is more expensive than the traditional cons

operation, which just requires allocating a two element

record.

Ideally, the NUR version should avoid the list length par-

ity checks and the alternative allocations of OLIST and ELIST

cells, thus be more space and time efficient than the OSR

version. The function map ~ shown in the previous section

behaves this way: it first checks whether the argument is

of even length or odd length, then the body m of the code

“knows” the length parity of its argument.

Now we present a source-to-source program transforma-

tion that indeed translates the OSR version of map to this

more efficient version map’. The basic idea is to rely on

static analysis to distinguish between lists of even length

and odd length at compile time, and to allow functions that

take lists as arguments to have three entry points: one dis-

patch function for list whose length parity is unknown, and

one specialized version each for list of even length and odd

length. Because the specialized versions have the knowledge

of the length parity information, the extra runtime costs of
the ucons and uproj operations can be avoided.

We can keep track of length parity information for most

program variables at compile time, in statically-typed lan-

guages such as ML, because lists are accessed via data con-

structors and pattern matching only, and they are immune

to side-effects.3 We borrow the refinement type inference al-

gorithm of Freeman and Pfenning [12, 11] by introducing a

refinement of the list type: the type olist for odd-length

lists and the type elist for even-length lists. For exam-

ple, an empty list is an even-length list; “consing” an ele-

ment onto an even-length list yields an odd-length list, and

“consing” an element onto an odd-length list yields an even-

length list. The map function always returns a list that has

the same length parity as its argument list; “append-ing”

two lists of same length parity results in an even-length list,

and “append-ing” two lists of opposite length parity gives an

odd-length list, etc.

In the following, we first define the source language (SRC)

that uses the traditional OSR notation and the target lan-

guage (TGT) that uses the NUR representations. Then we

presents an one-pass translation algorithm that infers the

length parity information while at the same time compiling

SRC expressions into TGT expressions. Finally we sketch

the correctness proof method and state the main theorems.

2.1 The source language SRC and the target lan-

guage TGT

Figure 1 gives the syntax of expressions (ranged over by

e)) declarations (d)) matches (m)) and patterns (P) for the
source language SRC and the target language TGT. We use

c to denote constants, z for program variables, and keywords

are underlined. The declarations inside a & expression may

be mutually recursive functions. For the source language,

the data constructors nil and :: under OSR are denoted

by NIL and CONS in expressions, and by NILP and CONSP

in patterns. For the target language, the data constructors

under NUR are denoted by OLIST, ELIST, TNIL, TAIL1 and

TAIL2 in expressions, and by OLISTP, ELISTP, TNILP, TAILIP

and TAIL2P in patterns. The underlying datatype definition

for the NUR version of lists in TGT can be written in ML

as follows:

dat at ype list = OLIST of olist

I ELIST of elist

and olist = TAIL1 of int * eli.st

and elist = TEIL

I TAIL2 of int * Ant * elist

This is essentially same as the list2 and t ai12 type de-

fined in Section 1. The constructor TAIL1 and TAILIP are

introduced to avoid dealing with tuple expressions in our toy

language.4

The source language SRC can be thought as a typed inter-

mediate language typical of those used in many compilers.

Variables and constants are annotated with types, as in X7

and c’. We assume that the SRC programs are typed using

the following very simple (monomorphic) types:

T ..—..— ~llistlrl-+m

where L denotes base types. This does not mean that

our algorithm cannot be applied to polymorphic lan-

guages; polymorphic expressions can be easily translated

3Unlike dy-tally typed languages such as Lisp and Scheme,

there is no “set cdr” operatcr in ML.

4 In practice, TAIL1 is a transparent data constructed, thus does

not require any extra storage to represent [7, 2].
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e ..—..— c“lz’l~rnlelez e ..—..— cl~lQ~lele21f@(elj e2)e3)

I ~o!~el I & d jg e, I OLIST(e~) I ELIST(e~)

NIL I CONS(el,ez) I TNIL I TAILl(el,ez) I TAIL2(el,eZ,eS)

I ucons(e~,e~) I econs(el,ez) I ocons(el,ez)

I ufetch(el) I efetch(el) I of etch(el)

d ::= dl ~ dz I (ZT = e) d ::= dl~dzl(z=e)

m ::= mllrnzl(p+e) m ::= mlflmzl(pae)

P ::= z’ I NILP I CONSP(z#l) P ::= z I OLISTP(P1) I ELISTP(P1)

I TNILP I TAILIP(z#, ) I TA1L2P(w,PI )

Figure 1: left: The Source Language SRC; right: The Target Language TGT

into monomorphically-ty ped intermediate language by us-

ing representation analysis, a technique first proposed by

Leroy [17] and Peyton Jones [21]. Because of space limit a-

tions, we have also made several other simplifications to ease

the presentation:

●

●

●

●

We use integer lists instead of polymorphic lists (but

our results easily extend to polymorphic lists).

We assume that the SRC programs are well-typed ac-

cording to the standard static typing rules, and that

all matches are complete and do not contain redundant

patterns.

Record patterns and expressions are omitted, but pose

no problems for our technique.

Multi-argument functions are also omitted since their

translations are similar to translating their curried ver-

sions, which are single-argument functions.

The target language TGT has severaJ other constructs

and operators: the term ~ (el, ez, es) is used to represent

a function that takes a list as argument and has three entry

points: one (el ) for lists whose parity is unknown, and one

each (ez and es) for lists of even length and odd length. The

one for unknown parity is always a header function that

checks the parity dynamically and immediately dispatches

to one of the other two entry points. There are three spe-

cial operators to extract the appropriate entry point from

the term ~ (cl, ez, es): ufetch to get el, efetch for ez,

and of etch for es. Finally, ucons denotes the basic cons

operation that does not know the length parity of its argu-

ments (the one described at the beginning of this section);

econs denotes the special operator that conses an integer

onto an even-length list, and oc ons conses an integer onto

an odd-length list. To understand why econs and ocons

can be implemented more efficiently than ucons, notice that

the expression ocons(el,econs( e2,e3)) can be transformed

to TAIL2(el,e2 ,e3 )1 which avoids the parity checking and the

allocation of the intermediate odd-length list cell.

2.2 The source-t o-target translation

The translation of a source language term into the target

language is based on the SRC types and the refinement

types inferred for the term and its subterms. Our translation

proceeds by computing refinement types and the translated

term simultaneously. The refinement types we use are de-

fined as follows:

P
..—..— r I 17 I olist I elist

\ T -+ pl I (elist + pl, olist ~ pz)

where olist and elist respectively represent even-length

and odd-length lists. For every SRC type ~, 17 denotes its

bottom refinement type. We use (elist ~ pl, olist ~ p2)

to specially denote a possible refinement type of a SRC type

list ~ r; intuitively, it can be understood aa the type

of a function that returns pl when applied to even-length

lists, and pz when applied to odd-length lists. Most of the

notations used in this paper is just a simplified version of

that used by Freeman and Pfenning [12, 11]: p c r means

that the refinement type p refines the SRC type r; PI v P2

denotes a refinement type that is the union of pl and p2. We

formally define our refinement type system in the appendix.

In Figure 2, we present the translation procedures for

expressions (ExpComp), declarations (DecComp), matches

(MatchComp), and patterns (PatComp) in the source lan-

guage SRC. The function ExpComp takes a SRC expression

e, a substitution S (from SRC program variables to TGT

expressions), and a refinement type environment r as its ar-

guments; and returns a TGT expression e’ and the inferred

refinement type p for e. Similarly, CompDec takes a SRC

declaration d, a substitution S, and a refinement type en-

vironment r; and it returns the TGT declaration, and the

resulting refinement type environment from d. The loop

inside CompDec computes the fixed point of the refinement

types; this is guaranteed to terminate because there are only

finitely many refinement types below any given SRC type (a

proof of this is given by Freeman [11, 12]).

Translation of function application (i.e., el ez ) is a sim-

ple recursive call of ExpComp on el and ez. Proper co-

ercions must be inserted depending on the inferred refine-

ment types for el and ez; this is done by the meta operation

applyfun(e~, pl, ej, pz) which is formally defined in the ap-

pendix of this paper.

Translation of abstraction (i.e., ~ m) is divided into two

cases. If the argument is not a list, this is just a simple

recursive call to ExpComp.5 If the argument is a list, the

corresponding matches are translated and specialized twice

(via MatchComp), once by assuming the argument as an

even-length list (i. e., par is elist), another by assuming the

5 Since there are no redundant matches, m must have the form
&(zT + e).
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ExpComp (CT, S, 17) = (c, r)

ExpComp (m’, S, r) = (S(Z), r(z))

ExpComp (NIL, S, r) = (TNIL, elist)

ExpComp (CONS(el, e~), S, r) =

let (e~, int) = ExpComp (cl, S, I’) and (ej, p) = ExpComp (e~, S, I’)

for p = elist, olist, cons is respectively econs and ocons, p’ is respectively olist and elist;

otherwise, cons is ucons and p’ = p;

in (cons(e~, ej), p)

ExpComp (Q m]isi-r, S, I’) =

let (nz~, PO) = MatchComp (m, S, r, olist) and (m:, P.) = MatchComp (m, S, r, elist)

~ti, .fe, ~o be new program variables and e’ = ~ (~., ~e, ~o);
d’ = (fu = combine(~e, pe, fo, po)) ~ (f. = @ m:) @ (fo = &I rn~)

in (~ f.i’ ~ e’, (elist ~ P., olist + PO))

ExpComp ((Q (z’ ~ e)), S, r) =

let (e’, p) = ExpComp (e, S + {z I+ z}, 17+ {z w r})

in (Q (z+ e’), ~ ~ p)

ExpComp (elez, S, I’) =

let (e~, pi) = ExpComp (cl, S, I’) and (ej, PZ) = ExpComp (ez, S, r)

in applyfin(ej, PI, e!, P2)

ExpComp (~ d &e, S, r) =

let (d’, rl) = DecComp (d, S, r) and S, = {z w x I x e Dom(I’, ))

(e’, p)= ExpComp (e, S + S,, r + I’i)

in (~ d’ ~ e’, p)

DecComp (d, S, r) =

let

in

assume ti is (z: = el) @ .. . ~ (Z2 = ek); and l?resul~ = {Z; + l~i I i = 1,..., k};

loop r,,,,, = r,e,.l,; (e:, p,) = ExpComp (e;, S, r + r.,~,,) where i =1, . . . . k;

r,e,ult = {x, * pi I i = 1, . ..jk}

until (r$tart = rregult )
((s1 = e;) @ .. . @ (z~ = e~), rresult)

MatchComp (m, S, r, par) =

let Assume {p, +- e, ] i = 1,..., k} are those rules in “m” that are compatible with par;

(p:,S$,r$) = PatComp (p,, par) for i =1, . ..jk
(e{, p,) = ExpComp (e,, S+ S,, I’&I’i) for i = 1,..., k

p=pl v... V Pk and e: = coerce(e~, p;, p) for z = 1, .. ..k

in ((pi * 4’)11...O(pi * 4’), p)

PatComp (NIm, elist) = (TNIL, 0, 0);

PatComp (z, elist) = (z, 0, {z w elist});

PatComp (z, olist) = (TAILIP(v, z), {z # TAILl(y, z)}, {z + olist}) where g,z are new program variables;

PatComp (CONSP(z, p), olist) = (TAILIP(Y, p’), S + {z I+ y}, I’ + {z I+ int})
where (p’, S, I’) = Pat Comp (p, elist) and y is a new program variable;

PatComp (CONSP(z, p), elist) = (TAIL2P(Y, z,p’), S + {z # y}, r + {z w int})

where (TAIL IP(Z, p’), S, 17) = PatComp (p, olist) and y be a new program variable.

Note: The special operators combine, applyfun and coerce are formally defined in the appendix.

Figure 2: Translation of Expressions, Matches, Declarations and Patterns
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SRC expression e = & (m = & (NIIl + NIL) I(CONSP(Z, ~) +. CONS(Z + 1, m r))) & m

TGT expression _ _e’ = fix m’ = d’ in m’ where

d’ = & ((f. = e.)~(f= = e.)a(f. = co)) A (M (f., f., f.));
e. = ~ (OLISTP(X) * OLIST(~. x)) I(ELISTP(Y) * ELIST(~~ y));
eo = & (TAILIP($, ?’) a ocone(z + 1, ((fetch) r)));

e. = ~ (TNILP + TNIL)o(’rJi1L2P(z, Y, r) * econs(z + 1, ((fetch) (TAIL1(Y, r)))))

Figure 3: Example on the map function

argument as an odd-length list (i.e., par is olist ); these two

resulting TGT matches (fe, ~0) correspond to two special-

ized entry points for lists of even length and odd length. The

special entry point ju for lists of unknown length is built by

the combine operation: combine(~~, p., i., p.) is a TGT

function that checks the length parity of its argument first

and then dispatch it to speciaJ versions ~e or fo.

The argument par in the MatchComp procedure repre-

sents the length parity (either el ist or olist ) of the argu-

ment in the match m. A simple SRC rule p * e is compatible

with par if p is compatible with par. The compatibility be-

tween a SRC pattern and a parity is inductively defined as

follows: variable pattern z is compatible with both elist

and olist; NILP is only compatible with elist; CONSP(Z, p)

is compatible with elist (or 01 ist ) if and only if p is com-

patible with olist (or elist).

The PatComp procedure translates a SRC pattern p into

the TGT pattern based on the parity assumption about p;

it also derives a substitution and a refinement type environ-

ment for all variables in p.

For example, Figure 3 shows the target expression from

translating a simplified version of the map function (shown

rather than as in Section 1). This function maps the “+1”

function to a list. Our algorithm infers that m has the re-

finement type (elist ~ elist, olist ~ olist) and yield

the target expression e’. Notice that in the real implement a-

tion, the expression ef etch(m’) (inside eo) and of etch(m’)

(inside e.) will be contracted into ~e and fo, and the applica-

tion of ~0 to TAILi(y, r) (inside ee) will be inline-expanded,

then the consecutive application of econs and ocons in ee

will be contracted into TAIL2(Z + 1, y + 1, ~e r). This is

exactly the form we desired in Section 1.

2.3 Correctness of the translation

The type and semantic correctness of our translation can

be proven using a technique similar to that of Leroy [17].

Because of space limitations, here we only sketch the proof

method and state the main theorem. We use EsRc to denote

the type deduction rule for SRC, and ETGT to denote the

refinement type deduction rule for TGT. More specifically,

suppose TE is a SRC type environment (from variables to

SRC type r), r is a refinement type environment, TE kSRC

e: r means that e is well-typed in TE under hsRc, and
r I-TGTe’ : p means e’ has the refinement type p in I’ under

FTGT. We also define the (straight-forward) call- by-uak

operational semantics VE 1- e L v for the source language

SRC, and VE’ 1- e’ -f+ v’ for the target language TGT,

where VE and VE’ are value environments (from variables

to values). A notion of equivalence between the typed SRC

values (which corresponds to the OSR) and the typed TGT

values (which corresponds to the NUR) is defined, written

as v : r x v’ : p. This x relation is only defined for the pair

of values when v has type r, v’ has type p, and p c r. VE :

TE s VE’ :17 is used to denote that for every z E Dom(VE),

such that VE(Z) : TE(z) = VE’(Z) : I’(x). The type and

semantic correctness of our translation algorithm now can

be stated by the following proposition, which is proven by

structural induction:

Proposition 2.1 Given a SRC expression e, a SRC type

environment TE, and a refinement type enuironmentr, such

that TE ksRc e : r is va2id, and r(z) c TE(z) for every z ~

Dom(TE), then ExpComp (e, ID, I’) = (e’, p) wi12 succeed;

moreover, (1) p c r; (.2) r l-TGT e’ : p is valid; (~) Given a

value environment VE under $ and a value environment

VE’ under ~, if W3 : TE %VE’:l’, and VEke~v,

then, there exists a value v’ such that VE’ 1- e’ ~ v’ and

V: TX5V’:L7.

3 Compiling with Multiple Continuations

The algorithm presented in Section 2 successfully translates

a program written in OSR notation into one in NUR. In

most cases, it pleasantly eliminates the costs of extra length

parity checks and alternating allocations of OLIST and ELIST

cells incurred by ucons and uproj. To demonstrate this,

we tried our algorithm on 15 frequently used list-processing

library functions.6 Among these 15 cases, our aJgorithm

successfully eliminates all the extra costs of ucons and uproj

for 14 of them. The only exception is the filter function,

which selects only those element of a list matching a given

predicate. The problem with filter is that even if we know

the length parity of its argument, we still do not know the

length parity of its result.

Here is the f ilt er function that takes a predicate p and a
list, and returns a list of all elements satisfying the predicate

P:

fun filter p =

let fun f nil = nil

I f (x::r) = if (p x) then x::(f r) else f r
in f

end

6Here is a list of these functions hd, t 1, length, append, rev,

map, fold, revfold, app, revapp, nthtai~ nth, exists, last,

and filter. They are mostly taken from the initial basis of the
Standard ML of New Jersey compiler [3].
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In this case, even we know the length parity of the argument

list, there is still no way to know the parity of the result “f

r.”

It turns out that this problem can be easily solved in the

continuation-passing style (CPS) framework [23, 2], because

we can specialize the return continuation on the length par-

it y of the result, and make it have multiple entry points

also. The idea is se follows when we are converting a SRC

expression e into CPS, we use a method similar to that of

Section 2 to infer the refinement type e; whenever we are not

sure about the length parity of a list expression, we duplicate

its return continuation into one accepting an even-length list

and another accepting an odd-length list. For example, the

source-language filter function is CPS-convert ed into the

filter’ function in Figure 4 (written using pseudo-CPS no-

tation in ML). Here, c, ce, co, ke, ko are the continuation

fun filter) (p, c) =

let fun f-m(OLIST(x,r) , ce, co) = f-o(x, r, ce, CO)

I f-u@LIsT r, ce, co) = f-e(r, ce, co)

end f-o(x, r, ce, co) = if (p x)

then let fun kc(z) = co(ecens(x, z))

fun ko(z) = ce(ocnus(x, z))

in f.e(r, ke, ko)

end
else f-e(r, ce, co)

and f-e(TIIL, ce, co) = ce(TKtL)

[ f-e(TAIL2(x, y, r), ce, co) = if (p x)
then let fun kc(z) = co(econs(x, z))

fun ko (Z) = Ce(ocens(x, z))

in f-o(y, r, ke, ko)

end
else f-o(y, r, ce, co)

in c (f -u)
end

Figure 4: Pseudo CPS code for filter

variables. The length parity of the variable z (i.e., the re-

turn result of f-e and f-o) is statically unknown, but after

duplicating the return continuation (kc, ko), z is then as-

sumed aa even-length list and odd-length list in each, thus

no parity check is necessary, and the more efficient version

(econe and ocons) of “ucone” can be used. The heap alloca-

tion of intermediate OLIST cons cell is still avoided because

of representation analysis [17].

It is likely, however, that this transformation will only im-

prove performance if the underlying compiler uses represen-

t ation analysis [17], and is very sophisticated about closure

construction and register usage. Otherwise, the extra cost of

closure creations could outweigh the elimination of the cons

operations.

Note, however, that though there are extra costs of testing

for ELIST/OLIST, there are fewer tests for nil. The result

(ss shown in the next section) is that the NUR version of

filter is about as fest as the OSR version, even without the

specialized CPS version of our analysis.

4 12xperiments

We have implemented the algorithm described in Section 2

in an experimental version of the Standard ML of New Jer-

sey compiler (S ML/NJ) [3, 2]. Because the compiler uses

continuation-passing style as its intermediate language, the

multiple-continuation approach described in Section 3 can

be easily added (this has not been done yet). The SML/NJ

compiler supports represent ation analysis [17], so interme-

diate odd-length lists are represented by unboxed records,

which normally stay in registers; this makes the specialized

versions (for even-length and odd-length lists) of ucons and

uproj operations involve even fewer memory allocations.

4.1 Avoiding code explosion

Translating from OSR to NUR involves function specializa-

tion and recursion unrolling. If a function takes n list argu-

ments with a k-way unrolled representation, we will need k“

entry points.

Though most list-processing functions take only one list

argument, for functions that take multiple list arguments

(e.g., the append function which concatenates two lists), an

exponential blowup is a serious concern.

To avoid the blowup, we use a system parameter called

unroll-level to control the depth of specialization and un-

rolling. For example, suppose function f has five arguments

that are of type list, and suppose unroll-level is 2, then

the compiler will only specialize the first two arguments,

but other three will not be specialized. The slight runtime

cost for not specializing some arguments is not a problem

in practice because most frequently-used list functions are

often one or two argument functions. For example, among

the 15 functions in the initial “List” library in the SML/NJ

compiler, 14 of them have only one list argument, and only

the append function haa two list arguments.

4.2 Measurements

Our technique guarantees a 25% savings in memory usage for

(long) lists. But execution time savings will be achieved only

if most of the ucons and uproj operations can be removed.

To demonstrate the savings of execution time, we have

compared the performance of several benchmarks under the

standard representation (OSR) and the unrolled representa-

tion (NUR). Our benchmarks include: life, the game of Life

implemented using lists (written by Reade [22]); ray, a sim-

ple ray tracer (this program does not contain much list pro-

cessing); quickeort, sorting a list of 20000 real numbers us-

ing the quicksort algorithm (taken from Paulson [20]); sam-

sort, sorting a list of 2000 real numbers using a variation of

mergesort algorithm (taken from Paulson [20]); intset, “set”

operations on sets of integers implemented with sorted lists;

remap, several runs of the map function on a long list.

Table 2 gives the total size of lists allocated during execu-

tion, the program execution time on a DECstation 5000/240,

and the code size increase, with the unroll-level set as 2,

and each cons cell 2-way unrolled (i.e., k=2). In all cases, the

NUR version allocates lessT and runs fd.er (11%-25%) than

the OSR version. Notice that life benchmark frequently

7NUR allocates 3370 less thau O SR on certain benchmarks,
because unlike in Table 1, each cons cell in our compiler still
contains an extra descriptor word.
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Lists Allocated CPU Time Code Size

(mega-words) ‘ (seconds) (kilo-bytes)

Benehmark OSR NUR Savings OSR NUR Savings OSR NUR Ratio

life 0.71 0.71 o% 1.19 0.91 23% 13.9 54.5 x3.9
ray 13.89 13.89 o% 22.71 20.59 9% 44.0 77.5 x1.76

quicksort 1.81 1.35 25% 0.98 0.87 11% 3.0 8.4 x2.8

samsort 1.81 1.30 29% 1.03 0.88 15% 2.5 5.3 X2.1

intset 0.54 0.36 33% 0.63 0.51 199’0 4.1 12.3 X3. O

remap 1.20 0.80 33% 1.73 1.29 25% 3.5 8.7 x2.5

Table 2: Performance of the Benchmark Programs

calls the filter function, and several functions that have

more than two list arguments (thus some of them are not

specialized); because of this, the total size of lists aJlocated

for NUR is about the same as OSR; but because NUR re-

quires many fewer memory references and nil tests, it runs

much faster than OSR (about 23~o). Although the code size

did not explode because of the unroll-level parameter, it

does increase by a factor of 1.76 to 3.9. We are currently

exploring ways of cutting down the code size for NUR, while

still maintaining its performance gain. One problem of our

current implementation of NUR is that it does not have a

good dead code detection aJgorithm, we believe that a more

refined implementation can achieve more code sharing and

produce much smaller code.

5 Related Work

Cdr-coding techniques were first proposed in early 70’s by a

group of researchers at MIT and Xerox [15, 13, 8, 9, 6, 5].

While these schemes differ from each other on the encoding

methods, they aJl rely on the hardware support from mi-

crocode Lisp machines [25, 10] to aJleviat e the high costs in-

curred by the runtime encoding bits. Since modern machines

tend not to offer these kinds of special hardware support, the

runtime cdr-coding technique quickly became obsolete in the

1980’s. The “static cdr-coding” technique presented in this

paper is a simple compile-time method for doing list com-

paction. It is attractive for modern machines because it does

not require any runtime encoding bits at all.

Li and Hudak [18] proposed a cdr-coding scheme for list

compaction under parallel environments. When severaJ lists

are being constructed simultaneously from the same heap,

the non-contiguous nature of the cells being allocated might

eliminate the opportunity for compaction under traditional

cdr-coding techniques. To overcome this, they also represent

list as linked (fixed length) vectors, and do the “consing” by

pre-allocating a vector first and consecutively filling in later

elements. This technique still relies on runtime encoding
bits to distinguish the state of each vector cell (i.e., filled or

empty), and is thus quite expensive. Our static cdr-coding

method, on the other hand, exploits compile-time analysis to

eliminate most runtime checks; at the same time, it poses no

more problem in paraJlel environments than does “ordinary”

consing.

On the side of st atically typed languages, Hall [14] has pre-

sented a list compaction technique for Haekell [16]. In her

scheme, lists can be represented as the old standard repre-

sentation (OSR) at one place, and in an optimized represen-

tation at another place. The optimized representation in her

scheme is adapted for lazy languages where the tail of a list

may not yet be evaluated, and thus its length parity cannot

be known. Therefore, she must put the “extra” elements at

the end of the list, making the test on each unrolled iteration

more complicated. In part because of this, her scheme re-

quires more runtime checks than ours. Hall’s analysis (based

on Hindley-Milner type inference) determines where to insert

coercions between different representations. But the repre-

sentations themselves must already be used in the programs.

In effect, this means that library functions must be explic-

itly programmed using several different representations, and

programs will be improved only if they use the library func-

tions.

The idea of using special and more efficient represen-

tations for frequently used data objects is originally from

Leroy [17] and Peyton Jones [21]. Both propose a type-

based program transformation scheme that allows objects

with monomorphic ML types to use special unboxed repre-

sentations. When an unboxed object interacts with a boxed

polymorphic object, appropriate coercions are inserted. But

as mentioned by Leroy [17], their representation analysis

techniques do not work well with ML’s recursive data types,

such as the list type. This is because the coercion between

the unboxed and boxed representation for lists is often rather

expensive (i.e., has costs proportional to the list length).

Our translation scheme, on the other hand, allows commonly

used list objects to uniformly use more efficient unrolled

representations, whether they have a monomorphic type or

not—though the element ualu es must still use the general

(single-word) representation. Coercions among representa-

tions for even-length lists, odd-length lists, and lists whose

length parity is unknown, are quite cheap.

The refinement type system used in Section 2 is a much

simplified version of Freeman and Pfenning’s refinement

type system [12, 11]. While the underlying framework and

type inference algorithm are quite similar, our motivation

is rather different. In their system, the refinement type is

declared by the programmer, and the refinement type in-
formation is used to detect program errors at compile time.

The reason that we use the refinement types, on the other

hand, is to do compile-time program transformations and

optimizations. The refinement type declaration used in our

scheme is embedded in the compiler, and is completely hid-

den from programmers.

As in Wadler’s views mechanism [24], the standard and

unrolled representations of lists in our scheme can be linked

together by a pair of in and out functions (e.g., the “ucons”

and “uproj” function in Section 1). We introduce unrolled

representation for lists mainly to improve the space and time
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efficiencies for programs using lists, while Wadler uses his

views mechanism to hide the representations of concrete data

types and reconcile pattern matching with data abstraction.

6 Conclusions

We have presented a “list unrolling” technique that allows a

more compact and efficient list representation for statically

typed languages. Our “list unrolling “ technique general-

izes to depth-d unrolling of k-ary trees with only k~m entry

points necessary for any function with m tree arguments.

Reasoning about lists (and trees) in these languages are eas-

ier than on pointers in other languages because lists (and

trees) are accessed only via data constructors and pattern

matching. The higher-level of language abstraction makes

permits the compiler to automatically transform a program

into one that uses more efficient data representations, and

that permits loop unrolling by eliminating certain control

and data dependence.
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Appendix

An introduction to refinement types

In this section, we give a brief introduction about the re-

jinernetat type system used in Section 2.2. Most of the no-

tations and concepts are directly borrowed from Freeman

and Pfenning [12, 1I], since our system is just a simplified

version of theirs. Basically we refine the list type by intro-

ducing elist for even-length lists and olist for odd-length

lists. Functions that take lists as arguments can have a more

“refined” type, (elist ~ PI, olist ~ pz), meaning that the

result has type pl if applied to an even-length list, and PZ if

applied to an odd-length list. The refinement types (ranged
over by p) are formally defined as follows:

P
..—..— r I 17 I olist 1 elist [ T ~ p~

I (elist ~ pl, olist ~ pz)

For every SRC type r, lr represents its bottom refinement

type. In the following, we say that a refinement type p

refines an SRC type ~, written p c T, if it can be deduced

by the rules (R1-R6) in Figure 5. Notice that we only refine

the domain of a function type if it is a list type,

We say that a refinement type PI is a subtype of another

refinement type pz, written pl < pZ, if it can be deduced

by the rules (S1-S7) in Figure 5. Similarly, Two refinement

types pI and pz are equal, denoted by P1 s PZ, if PI < P2 and

p2 s pl. s is an equivalence relation on refinement types.
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(RI) r c ~; (R2) 17 c r; (R3) elist c list; (R4) olist c list;

(R5) (r+ p) c (~ ~ T’) if p c ~’;

(R6) (elist -+ pl, olist + PZ) c (list ~ r’) if pl c r’ and PZ c ~’.

(Tl) top(~) = (r); (T2) top(lr) = (r); (T3) top(elist) = (list); (T4) top(olist) = (list);

(T5) top(~ + p) = r ~ (top(p)); (T6) top((elist ~ PI, olist ~ p2)) = list + (top(p~)).

(Ul)p Vp’=p’and p’Vp=p’if(p <p’);

(U2) (olist) V (elist) = list and (elist) V (olist) = list;

(U3) (T+ p,) v (r + p2)=r + (p, v /22);

(U4) (elist ~ PI, olist ~ p2) V (list -p) = (elist ~ PI V p, olist ~ pz V p);

(U5) (list -+ p) V (elist - PI, olist ~ pz) = (elist ~ PI V p, olist ~ p2 V p);

(U6) (elist ~ PI, olist ~ p;) V (elist ~ pz, olist ~ p;) = (eli-st -+ PI V P2, olist + p; V Pj)

(Al) apprfty(l~,+~,, m) = L, if P1 C Tl; (A2) apprfty(r ~ P, l.) = -hp(p);
(A3) apprfty(rl ~ P2, p,) = P2 if p, C ~,;

(A4) apprfty(p, ~~ list ) == ~t~P(PIVP,) and apprfty(p, list) = p, V p, and
apprfty(p, elist) = pl and apprfty(p, olist) = pZ where p = (elist ~ pi, olist ~ PZ).

Figure 5: Definitions of “c”, “~”, “V”, “top”, and “apprfty” on refinement types

In this paper, when we talk about a refinement type p, we

refer to its equivalence class under ~.

Every SRC type ~ haa a finite number of refinement types.

Moreover, these refinement types form a lattice under the

subtype relation “s”, with r aa its top and J-T as its bottom.

For example, the lattice of refinement types for the SRC type

list is:

/list\
elist ol’ist

\ /
_L]i~~

Given a refinement type p, it is always possible to find

out which SRC type it refines. This is denoted by the top

operation, which is defined by rules (T I-T5) in Figure 5.

Given two refinement types pl and P2, if top(pl) =

top(pz), then their union type, written aa pl V PZ, is still

a refinement type, and is inductively defined by rules (Ul-

U6). It is easy to see that given two refinement types pl

and pz, if p = pl v PQ, then pl s p and P2 < P (prcnwn by

structural inductions on p).

The operation apprfty of applying a refinement type pl

to another refinement type pz is defined by rules (A1-A4)

in Figure 5. This operation is used extensively by the met a

operation applyfun defined in Section A. 2.

Freeman and Pfenning [11, 12] give an refinement type

inference algorithm for typed core-ML. The inference algo-

rit hm we used in Section 2.2 for the language SRC is just

an adaption of their algorithm to the above refinement type

system.

Notice that given an SRC expression e of type T, the trans-

lation algorithm in Section 2.2 returns the corresponding

TGT expression e’ and a refinement type p for e. This “p”

happens to be the type of e’ under l-TGT, where “1-TGT”
is just a set of (simple monomorphic) typing rules for TGT

expressions by p defined above extended with ‘elist * PI”

and “olist - PI”. For example, the typing rule for

the econs expression will be “if I’ ETGT el : int and

r kTGT e2 : elist; then r ETGT econs(el, e2) : olist;”

the rule for ~ (cl, ez, es] will be “if 17 FTGT el : list ~ P

and 17 FTGT e2 : elist - pe and r RTGT ea : olist -+ PO

and p = P. V PO; then r l-TGT QQ (cl, ez, es) : (elist +
p=, olist ~ po). These typing rules are straightforward,

and are thus omitted here.

A.2 The definition of several meta-operations

In this section, we formally define the three meta opera-

tions coerce, combine and applyfun used in the transla-

tion algorithm in Figure 2.

Figure 6 gives the definition of combine. Given two tar-
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combine(e{, PI, ej, pz) = ~ (OLIST z + coerce(e{z, PI, P)) I(ELIST y * coerce(ejy, PZ, P))

where p = (pl V p2 ) and z,y are new program variables

coerce(e’, p, p) = e’;

coerce(e), -l-r, p) = e’;

coerce(e’, elist, list) =ELIST(e’);

coerce(e’, olist,list) =OLIST(e’);

coerce(e’, r+pl, T+p2)=Q (z*coerce((e’ z), pl, p2));

coerce(e’, (elist+ pl, olist+p2),list+ p’) =

Q (z+coerce(((ufetch( e’)) z), p1Vp2, p’));

coerce(e’,list +P’, (elist+ pl, olist+p2))=& d’ in(fn3 (~ti,i.,fo))

where ~U,fe,fO are new program variables

and d’ = (f. = m~) ~ (f= =m~) ~ (fO =m~) and m: = (combine(~., pl, ~0, p2))

and mj = (z + coerce((e’ Z), p’, pi)) and m: = (z+coerce((e’ z), p’, p2));

coerce(e', (elist+ Pl, olist+P2), (elist+ p{, olist+p~)) =- d’Q (f@ (.fu,.fe,.fo))

where fU,fe,fO are new program variables

and d’ = (f. =m~)~(f.=m~)~(f.=nz~) and m~ = (cornbine(f., p;, ~o, pj))

andmj = (z+coerce(((efetch( e’)) z), pl, pj)) andm~=(z +coerce(((ofetch( e’)) z), p2, p~))

applyfun(e~, pl, e~, p2) = (ej (coerce(eJ, p2,72)),apprfty (pi, p2)) if pl = 72 + P;

aPPlyfUn(el, pl, eL, p2) = ((ietch(e~)) ek aPMW(pl,p2))if pl = (elist+ p~, olist+pj)
here ~etch irrespectively efetch, ofetch, orufetchifp2 iselist, olist, brothers;

Otherwise, applyfun(e~, pl, ej, p2) = (ej ej, apprfty(pl, p2)).

Figure 6: Definitions of “combine”, “coerce”, and “applyfun”

get expressions ej and ej, and two refinement types pl and

p2, the operation combine(e~,pl,e j,p2), constructs a dis-

patch TGT function that callse~ ore; respectively depend-

ing on the length parity of its argument.

It is occasionally necessary to introduce code to coerce the

result of a term from one representation to another. Given

a target expression e’, two refinement types pl and p2 such

that pl < p2, then the operation coerce(e’, pl, p2), which

returns anew target expression, is defined in Figure 6. No-

tice that combine and coerce are mutually recursive.

The applyfun operation inserts appropriate coercions

for function applications. Given two TGT expressions e!

and ej, and two refinement types pl and p2, the operation

applyfun(e{, pl, ej, p2), which returns a TGT expression

and a refinement type, is also defined in Figure 6.
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