
B-Treaps Revised: Write Efficient Randomized
Block Search Trees with High Load
Roodabeh Safavi !

Institute of Science and Technology Austria (ISTA), Am Campus 1, A-3400 Klosterneuburg, Austria

Martin P. Seybold !

University of Vienna, Faculty of Computer Science, Theory and Applications of Algorithms,
Währinger Straße 29, A-1090 Vienna, Austria

Abstract
Uniquely represented data structures represent each logical state with a unique storage state. We
study the problem of maintaining a dynamic set of n keys from a totally ordered universe in this
context.

We introduce a two-layer data structure called (α, ε)-Randomized Block Search Tree (RBST) that
is uniquely represented and suitable for external memory. Though RBSTs naturally generalize the
well-known binary Treaps, several new ideas are needed to analyze the expected search, update, and
storage, efficiency in terms of block-reads, block-writes, and blocks stored. We prove that searches
have O(ε−1 + logα n) block-reads, that (α, ε)-RBSTs have an asymptotic load-factor of at least
(1− ε) for every ε ∈ (0, 1/2], and that dynamic updates perform O(ε−1 + logα(n)/α) block-writes,
i.e. O(1/ε) writes if α = Ω(logn

log logn). Thus (α, ε)-RBSTs provide improved search, storage-, and
write-efficiency bounds in regard to the known, uniquely represented B-Treap [Golovin; ICALP’09].

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Unique Representation, Randomization, Block Search Tree, Write-Efficiency,
Storage-Efficiency, Computational Geometry, Top-Down Analysis

Funding This work was supported under the Australian Research Council Discovery Projects funding
scheme (project number DP180102870). This work was further supported by the European Research
Council under the European Union’s Horizon 2020 research and innovation funding scheme (grant
number 101019564 “The Design of Modern Fully Dynamic Data Structures”) .

1 Introduction

Organizing a set of keys such that insertions, deletions, and searches, are supported is one of
the most basic problems in computer science that drives the development and analysis of
search structures with various guarantees and performance trade-offs. Binary search trees for
example have several known height balancing methods (e.g. AVL and Red-Black trees) and
weight balancing methods (e.g. BB[a] trees), some with O(1) writes per update (e.g. [9]).

Block Search Trees are generalizations of binary search trees that store in every tree node
up to α keys and α+ 1 child pointer, where the array size α of the blocks is a (typically) fixed
parameter. Since such layouts enforce a certain data locality, block structures are central for
read and write efficient access in machine models with a memory hierarchy.

External Memory and deterministic B-Trees variants In the classic External Memory (EM)
model, the n data items of a problem instance must be transferred in blocks of a fixed size B
between a block-addressible external memory and an internal Main Memory (MM) that can
store up to M data items and perform computations. Typically, n�M > B and the MM
can only store a small number of blocks, say M/B = O(1), throughout processing. Though
Vitter’s Parallel Disk Model can formalize more general settings (see [21, Section 2.1]), we
are interested in the most basic case with one, merely block-addressible, EM device and one

ar
X

iv
:2

30
3.

04
72

2v
1

 [
cs

.D
S]

 8
 M

ar
 2

02
3

mailto:roodabehsafavi@gmail.com
https://orcid.org/0000-0003-4516-4212
mailto:mpseybold@gmail.com
https://orcid.org/0000-0001-6901-3035

2 B-Treaps Revised: Write Efficient Randomized Block Search Trees with High Load

computing device with MM. The cost of a computation is typically measured in the number
of block-reads from EM (Is), the number of block-writes to EM (Os), or the total number of
IOs performed on EM. For basic algorithmic tasks like the range search, using block search
trees with α = Θ(B) allows obtaining algorithms with asymptotic optimal total IOs (see,
e.g., Section 10 in the survey [21]).

Classic B-Trees [3] guarantee that every block, beside the root, has a load-factor of
at least 1/2 and that all leaves are at equal depth, using a deterministic balance criteria.
The B*-Tree variant [14, Section 6.2.4] guarantees a load-factor of at least 2/3 based on
a (deterministic) overflow strategy that shares keys among the two neighboring nodes on
equal levels. Yao’s Fringe Analysis [22] showed that inserting keys under a random order in
(deterministic balanced) B-Trees yields an expected asymptotic load-factor of ln(2) ≈ 69%,
and the expected asymptotic load-factor is 2 ln(3/2) ≈ 81% for B*-Trees. For general
workloads however, maintaining higher load-factors (with even wider overflow strategies)
further increases the write-bounds of updates in the block search trees [2, 15].

The popular, e.g. [10, 13], write-optimized Bε-Tree [7, 4] provides smooth trade-offs
between O(log1+αε(n)/α1−ε) amortized block writes per insertion and O(log1+αε n) block
reads for searches. E.g. tuning parameter ε = 1 retains the bounds of B-Trees and ε = 1/2
provides improved bounds. In the fully write-optimized case (ε = 0) however, searches have
merely a O(logn) bound for the number of block-reads. The main design idea to achieve
this is to augment the non-leave nodes of a B-Tree with additional ‘message buffers’ so that
a key insertion can be stored close to the root. Messages then only need propagation, further
down the tree, once a message buffer is full (cf. [7, Section 3.4] and [4]).

Clearly, the state of either of those (deterministic) structures depends heavily on the
actual sequence in which the keys were inserted in them.

Uniquely Represented Data Structures For security or privacy reasons, some applications,
see e.g. [11], require data structures that do not reveal any information about historical
states to an observer of the memory representation, i.e. evidence of keys that were deleted
or evidence of the keys’ insertion sequence. Data structures are called uniquely represented
(UR) if they have this strong history independence property. For example, sorted arrays are
UR, but the aforementioned search trees are not UR due to, e.g., deterministic rebalancing.
Early results [19, 20, 1] show lower and upper bounds on comparison based search in UR
data structures on the pointer machine. Using UR hash tables [5, 17] in the RAM model,
also pointer structures can be mapped uniquely into memory. (See Theorem 4.1 in [5] and
Section 2 in [6].)

The Randomized Search Trees are defined by inserting keys, one at a time, in order of a
random permutation into an initially empty binary search tree. The well-known Treap [18]
maintains the tree shape, of the permutation order, and supports efficient insertions, deletions,
and searches (see also [16, Chapter 1.3]). Any insertion, or deletion performs expected O(1)
rotations (writes) and searches read expected at most 2 ln(n + 1) tree nodes, which is
particularly noteworthy for machine models with asymmetric cost or concurrent access.

Golovin [12] introduced the B-Treap as first UR data structure for Byte-addressable
External Memory (BEM). B-Treaps are due to a certain block storage layout of an associated
(binary) Treap. I.e. the block tree is obtained, bottom-up, by iteratively placing sub-trees,
of a certain size, in one block node1. The author shows bounds of B-Treaps, under certain

1 E.g. byte-addressable memory is required for intra-block child pointers and each key maintains a size
field that stores its sub-tree size (within the associated binary Treap).

Roodabeh Safavi and Martin P. Seybold 3

Data Structure Model # Blocks

non-UR

B-Tree [3] EM
Size O(n/α)

Updates
O(logα n)

Search

Bε-Tree [7] EM
Size O(n/α)

Updates O
(

1
ε

logα n
α1−ε

)
Search O

(
1
ε

logα n
)

UR

B-Treap [12] BEM
Size O(n/α)

Updates write
O
(

1
ε

logα n
)

, if α = Ω
(

ln
1

1−ε n
)
.

Search reads

(α, ε)-RBST
EM

Size
O(n/α)

≤ (1 + ε)n/α , if n = ω(α2/ε).

Updates write
O
(

1
ε

+ logα n
α

)
O(1/ε) , if α = Ω

(logn
log logn

)
.

Search reads O(1
ε

+ logα n)
Table 1 Overview of known non-UR and UR data structures for EM and the proposed RBSTs.

parameter conditions: If α = Ω
(

(lnn)
1

1−ε

)
, for some ε > 0, then updates have expected

O(1
ε logα n) block-writes and range-queries have expected O(1

ε logα n + k/α) block-reads,
where k is the output size. If α = Ω

(
n

1
2−ε
)
, for some ε > 0, then depth is with high

probability O(1
ε logα n) and storage space is linear (see Theorem 1 in [12]). The paper also

discusses experimental data, from a non-dynamic implementation, that shows an expected
load-factor close to 1/3 (see Section 6 in [12]). Though the storage layout approach allows
leveraging known bounds of Treaps to analyze B-Treaps, the block size conditions, e.g.
α = Ω(ln2 n), are limiting for applications of B-Treaps in algorithms.

1.1 Contribution and Paper Outline
We propose a two-layer randomized data structure called (α, ε)-Randomized Block Search
Trees (RBSTs), where α is the block size and ε ∈ (0, 1/2] a tuning parameter for the space-
efficiency of our secondary layer (see Section 2). Without the secondary structures, the
RBSTs are precisely the distribution of trees that are obtained by inserting the keys, one at
a time, under a random order into an initially empty block search tree (e.g. α = 1 yields
the Treap distribution). RBSTs are UR and the algorithms for searching are simple. We
give a partial-rebuild algorithm for dynamic updates that occupies O(1) blocks of temporary
MM storage and performs a number of write operation to EM that is proportional to the
structural change of the RBST (see Section 2.1).

We prove three performance bounds for (α, ε)-RBSTs in terms of block-reads, block-writes,
and blocks stored. Section 3 shows that searches read expected O(ε−1 + logα n) blocks.
Section 4 shows that (α, ε)-RBSTs have an expected asymptotic load-factor of at least (1− ε)
for every ε ∈ (0, 1/2]. Combining both analysis techniques, we show in Section 5 that dynamic
updates perform expected O(ε−1 + logα(n)/α) block-writes.

Thus, RBSTs are simple UR search trees, for all block sizes α ≥ 1, that simultaneously
provide improved search, storage utilization, and write-efficiency, compared to the bottom-up

4 B-Treaps Revised: Write Efficient Randomized Block Search Trees with High Load

B-Treap [12]. See Table 1 for a comparison with known UR and non-UR data structures for
EM. To the best of our knowledge, (α, ε)-RBSTs are the first structure that provides the
optimal search bound while being fully-write efficient and storage-efficient. Central for the
design of our block search tree is the secondary layer that uses a fan-out for the block nodes
that is proportional the subtree’s weight, i.e. the number of keys that are stored in it.

2 Randomized Block Search Trees

Unlike the well-known B-Trees that store between α and α/2 keys in every block and have all
leaves at equal depth, our definition of (α, ε)-RBSTs does not strictly enforce a minimum load
for every single node. The shape of an RBST TX(π), over a set X of n keys, is defined by an
incremental process that inserts the keys x ∈ X in a random order π, in an initially empty
block search tree structure, i.e. with ascending priority values π(x). The actual algorithms
for dynamic updates are discussed in Section 2.1. Next we describe the basic tree structure
that supports both, reporting queries (i.e. range search) and (order-)statistic queries (i.e.
range counting and searching the k-th smallest value). In Section 2.1 we also discuss how to
omit explicitly storing subtree weights, which allows improved update bounds for the case
that statistic queries are not required in applications. Next we define the structure of our
block search tree and state its invariants.

Let array size α ≥ 1 and buffer threshold β ≥ 0 be fixed integer parameters. Every RBST
block node stores a fixed-size array for α keys and α + 1 child pointers, a parent pointer,
and its distance from the root. As label for the UR of a block-node, we use the key-value
x of minimum priority π(x) from those keys contained in the node’s array. Every child
pointer is organized as a pair, storing both pointer to the child block and the total number
of keys s ≥ 1 contained in that subtree. (E.g. the weight of a node’s subtree is immediately
known to the parent, without reading the respective child.) All internal blocks of an RBST
are full, i.e. they store exactly α keys. Any block has one of two possible states, either
non-buffering (s ≥ β) or buffering (s < β). Though (α, ε)-RBSTs will use β = Θ(α2/ε), we
first give the definition of the primary tree without the use of buffers (β = 0), i.e. every
block remains non-buffering.

For β = 0, the trees are defined by the following incremental process that inserts the keys
in ascending order of their priority π(·). Starting at the root block, the insertion of key x
first locates the leaf block of the tree using the search tree property. If the leaf is non-full, x
is emplaced in the sorted key array of the node. Otherwise, a new child block is allocated
(according to the search tree property) and x is stored therein. Thus, any internal block
stores those α keys that have the smallest priority values in its subtree2. See Figure 1 (left)
for an example on 26 keys with β = 0 that consists 12 blocks, which demonstrates that leaves
may merely store one key in their block. Our tree structure addresses this issue as follows.

For β > 0, the main idea is to delay generating new leaves until the subtree contains
a sufficiently large number of keys. To this end, we use secondary structures that we call
buffers, that replace the storage layout of all those subtrees that contain ≤ α+ β keys. Thus,
all remaining block nodes of the primary structure are full and their children are either a
primary block or a buffer. There are several possible ways for UR organization of buffers, for
example using a list of at most d(α+ β)/αe = O(α/ε) blocks that are sorted by key values.
We propose the following UR structure that will result in stronger bounds.

2 For example, α = 1 and β = 0 yields the well-known Treap and α > 1 search trees with fan-out α+ 1.

Roodabeh Safavi and Martin P. Seybold 5

δ = 1 δ = 2

δ = 4

δ = 3

Figure 1 Cartesian representations of two RBSTs that shows the i-th largest key xi ∈ X with
priority value π(i) as point (i,−π(i)) in the plane (n = 26 and α = 3). The active separators of each
block v are shown as vertical lines and the horizontal lines p†(v). The left tree has β = 0 and the
right tree has buffering subtrees. Note that all, except the last block, on a root-to-leaf path are full.

Secondary UR Trees: Buffers with weight proportional fan-out Our buffers are search
trees that consists of nodes similar to the primary tree which also store the keys with
the α smallest priority values, from the subtree, in their block. However, the fan-out
of internal nodes varies based on the number of keys n ≤ α + β in the subtree. Define
δ(n) = min{α+ 1,max{1, dn−αρ e}} as the fan-out bound for a subtree of weight n ≤ α+β =:
α+ (α+ 1)ρ. We defer the calibration of the parameter ρ = Θ(α/ε) to Section 4. To obtain
UR, the buffer layout is again defined recursively solely based on the set of keys in the buffer
and the random permutation π that maps them to priority values.

For δ = 1, the subtree root has at most one child, which yields a list of blocks. The keys
inside each block are stored in ascending key order, and the blocks in the list have ascending
priority values. That is the first block contains those keys with the α smallest priorities, the
second block contains, from the remaining n− α keys, those with the α smallest priorities,
and so forth.

For δ ∈ [2, α+ 1], we also store the keys with the α smallest priorities in the root. We
call those keys with the δ− 1 smallest priority values the active separators of this block. The
remaining n− α keys in the subtree are partitioned in δ sets of key values, using the active
separators only. Each of these key sets is organized recursively, in a buffer, and the resulting
trees are referenced as the children of the active separators.

The right part of Figure 1 gives an example of the (α, ε)-RBST on the same set of 26
points that consists of 11 blocks. Some remarks on the definition of primary and secondary
RBST nodes are in order. The buffer is UR since the storage layout only depends on the
priority order π of the keys, the number of keys in the buffer, and the order of the key values
in it. Note that summing the state values of the child pointers yields s1 + . . .+ sδ + α = n

the weight of the subtree, without additional block reads. Moreover, whenever an update in
the secondary structure brings the buffer’s root above the threshold, i.e. s1 + . . .+ sα+1 > β,
we have that its root contains those keys with the α smallest priorities form the set and all
keys are active separators, i.e. the buffer root immediately provides both invariants of blocks
from the primary tree.

6 B-Treaps Revised: Write Efficient Randomized Block Search Trees with High Load

Note that this definition of RBSTs not only naturally contains the randomized search
trees of block size α, but also allows a smooth trade-off towards a simple list of blocks
(respectively ε =∞ and ε = 0). Though leaves are non-empty, it is possible that there exist
leaves with load as low as 1/α in RBSTs. Despite its procedural nature, above’s definition of
the block search tree does not yield a space and I/O efficient algorithm to actually construct
and maintain RBSTs. The reminder of this section specifies the algorithms for searching,
dynamic insertion, and dynamic deletion, which we use for computing RBSTs. Our analysis
is presented in the Sections 3, 4, and 5.

Successor and Range Search in (α, ε)-RBSTs

As with ordinary B-Trees, we determine with binary search on the array the successor of
search value q, i.e. the smallest active separator key in the block that has a value of at least
q, and follow the respective child pointer. If the current search node is buffering, i.e. has
fewer than α active separators, we also check the set of non-active keys in the block during
the search in a local MM variable to the find the successor of q. The search descends until
the list, i.e. block nodes with fan-out ≤ 1, in the respective RBST buffer is found. Since the
lists are sorted by priority, we check all keys, by scanning the O(1/ε) blocks of the list, to
determine the successor of q. This point-search extends to query-ranges in the ordinary way
by considering the two search paths of the range’s boundary [q, q′].

To summarize, successor and range search occupies O(1) blocks in main memory, does
not write blocks, and the number of block-reads is O(D), where D is the depth of the RBST.

2.1 Insertion and Deletion via Partial-Rebuilds
As with the Treaps, the tree shape of (α, ε)-RBSTs is solely determined by the permutation
π of the keys. For X ∪ {x} = X ′, any update method that transforms TX(π) into TX′(π)
and vice-versa are suitable algorithms for insertions and deletions. Unlike Treaps, that use
rotations to always perform insertions and deletions at the leaf level, rotations in block
search trees seem challenging to realize and analyze. We propose an update algorithm that
rebuilds subtrees in a top-down fashion, which has some vague similarities to the re-balancing
mechanism of Scapegoat (Binary Search) Trees.

A naïve update algorithm may seek a full-rebuild of the entire subtree of the block whose
array is subject to a key insertion or deletion. This also allows to maintain the nodes’ distance
from the root (for certifying search performance). The main difficulty for update algorithms
is to achieve I/O-bounds for EM-access that are (near) proportional to the structural change
in the trees, while having an O(1) worst-case bound on the temporary blocks needed in main
memory. The partial-rebuild algorithm that we introduce in this section has bounds on the
number of block-reads (Is) and block-writes (Os) in terms of the structural change of the
update, the expected structural change of RBST updates is analyzed in Section 5.

I Observation 1. Let π be a permutation on the key universe U and X ′ = X ∪ {x} ⊆ U

the keys in the tree after and before the insertion of x. Let m be the number of blocks in
RBST TX(π) that are different from the blocks in RBST TX′(π) and m′ the number of blocks
in TX′(π) that are different from the blocks in TX(π). Let D and D′ be the height of the
subtrees in TX(π) and TX′(π) that contains the those blocks. The update algorithm in this
section performs O(m+m′) block-writes to EM, reads O(m′ +D′ ·m) blocks, and uses O(1)
blocks of temporary MM storage during the update.

Our rebuild-algorithm aims at minimizing the number of block-writes in an update, using
a greedy top-down approach that builds the subtree of TX′ in auxiliary EM storage while

Roodabeh Safavi and Martin P. Seybold 7

v :

δv = δv′

v :

δv < δv′

v : v :

x present and inactive

x present and active

v : v :

x not present

fan-out

insert insert

rebuildrebuild α− 1 α− 1α

rebuild α α α− 1

rebuildα α

rebuild α α α− 1

Figure 2 Rebuild cases for insertion of key x (red) in block v of an RBST.

reading the keys in TX from UR EM. On completion, we delete the m obsolete blocks from
UR memory and write the m′ result blocks back to UR to obtain the final tree TX′ . This way,
our update algorithm will only require O(1) blocks of temporary storage in MM (and still
supports searches while rebuilding of the subtree is in progress). The basic idea is as follows.
Given a designated separator-interval (`(v′), r(v′)) when assembling block v′ for writing to
auxiliary EM, we determine those keys with the α-smallest priority values by searching in
TX , place them in the array of v′, determine the fan-out δv′ of and the active separators of
block node v′, and recursively construct the remaining subtrees for those keys within each
section between active separators of v′. Eventually, we free the obsolete blocks of TX form
UR and move the result subtree from the auxiliary to UR memory. Next we discuss the
possible rebuild cases when inserting a new key x to the tree, their realization is discussed
thereafter. For a block node v, let X(v) denote the set of keys stored in the subtree of v,
B(v) ⊆ X(v) the keys stored in the array of v itself, p∗(v) = min{π(y) : y ∈ B(v)}, and
p†(v) = max{π(y) : y ∈ B(v)}. (E.g. the key y with π(y) = p∗(v) is the UR label of the
block v.)

Consider the search path for x in the RBST TX . Starting at the root node, we stop at
the first node v that i) must store x in its array (i.e. π(x) ∈ [p∗(v), p†(v)]) or ii) that requires
rebuilding (i.e. must increase its fan-out). To check for case ii), we use the augmented child
references of v to determine the number of keys in the result subtree v′. Thus, both fan-outs,
δv pre-insertion and δv′ post-insertion, are known without additional block reads from the
stored subtree weights3.

If neither i) nor ii) occurs, the search halts in a buffer list (δv = δv′ ≤ 1) and we simply
insert the key and rewrite all subsequent blocks of the list in one linear pass. Note that, if
the list is omitted (as there are no keys in the active separator interval), the insertion must
simply allocate a new block that solely stores x to generate the output RBST. It remains to
specify the insertion algorithm for case i) and ii). See Figure 2 for an overview of all cases.

In ii), v is a buffer node that must increase its fan-out. It suffices to build two trees from
one subtree, each containing the top α keys in their root. If the new key x is contained in

3 To avoid storing and updating subtree weights explicitly, the subtree weight can be computed bottom-up
along the search path of x until the node v, containing the m′ blocks, is found.

8 B-Treaps Revised: Write Efficient Randomized Block Search Trees with High Load

this interval, we pass x as additional ‘carry’ parameter to the procedure. If x is not contained
in this interval, the insertion continues on the respective child of v that must contain x. (See
Figure 2 bottom right.) Note that at most three subtrees of v′ are built in auxiliary EM and
that reads occur in at most two subtrees of v, regardless of the actual value of α.

In i), v is an internal node that stores α keys and there are four cases; depending on if x
is an active separator in v′ and if the fan-out stays or increases (see Figure 2). In all cases, it
suffices to rebuild at most three subtrees. Two trees for the two separator-intervals that are
incident to x and one tree that contains the two subtrees of the separator-intervals incident
to the key y that is displaced from block v by the insertion of x, i.e. π(y) = p†(v). Note that
deciding if insertion of x in a block v that is buffering leads to an increased fan-out does not
require additional block reads, as the weight of the respective subtree is stored together with
the child reference in v.

Note that deleting a key x from an RBST has the same cases for rebuilding sections of
keys between active separators. Moreover, if a deletion leads to a buffering block (δv′ < α+1),
then all its children are buffering and thus store their subtree weight together with the
reference to it. Thus, determining the fan-out for deletions also requires no additional block
reads.

To complete our update algorithms, it remains to specify our top-down greedy rebuild
procedure for a given interval between two active separators. First, we isolate the task of
finding the relevant keys, needed for writing the next block to auxiliary EM within the
following range-search function top(k, v, (`, r)). Given a subtree root v in TX , a positive
integer k ≤ α, and query range (`, r), we report those keys from Y = X(v) ∩ (`, r) that have
the k smallest priority values and their respective subtree weights w0 + . . .+wk = |Y | based
on a naïve search that visits (in ascending key order) all descendants of v that overlap with
the query range.

For an α or an α− 1 rebuild, we run the respective top query on the designated interval
range and check if x is stored in the output block or beneath it. Then we determine the
fan-out from the range count results {wi}, which determines the active separators in the
output block. We allocate one block in auxiliary EM for each non-empty child-reference and
set their parent points. Finally, we recursively rebuild the subtrees for the intervals of the
active sections, passing them the reference to the subtree root in TX that holds all necessary
keys for rebuilding its subtree. Note that for this form of recursion, using parent pointers
allows to implement the rebuild procedure such that only a constant number of temporary
blocks of MM storage suffice. After the subtrees are build in the auxiliary EM, we delete the
m obsolete blocks from UR and move the m′ blocks to UR to obtain the final tree T ′.

Clearly, the number of block writes is O(m + m′) and the number of block reads is
O(D′ ·m), from a simple charging argument. That is, any one block u of the m blocks in
old tree is only read by the top call if the key range of u intersects the query range (`, r)
of the top call. Consequently (`, r) contains the smallest key, the largest key, or all keys of
non-empty u. The number of either such reads of u is bounded by D′, since those blocks
from the output tree that issue the call to top have intervals that are contained in each other
by the search tree property. The expected I/O bounds of our partial rebuild algorithm will
follow from our analysis of the depth and size of RBSTs in the next sections.

3 Bounds for Searching and the Subtree Weight in RBSTs

Since successful tree searches terminate earlier, it suffices to analyze the query cost for
keys q /∈ X, i.e. unsuccessful searches. In this section, we bound the expected block reads

Roodabeh Safavi and Martin P. Seybold 9

q

K0

K1

K2

Y −
1

Y −
2

Figure 3 Illustration of the layer partitions Ki and the number of keys counted by Y −1 = 5 and
Y −2 = 6 (black) in the proof of Lemma 2.

for searching for some fixed q in the block trees TX , where the randomness is over the
permutations π ∈ Perm(n), i.e. the set of bijections π : X → {1, . . . , n}.

Consider the sequence v1, v2, . . . of blocks of an RBST on the search path from the root
to some fixed q. Since the subtree weight is a (strictly) decreasing function, we have that
the fan-out δ of the nodes is a non-increasing function that eventually assumes a value ≤ 1.
From the definition of δ, we have that there are (in the worst case) at most O(1/ε) blocks in
the search path with δ = 1. Thus, it suffices to bound the expected number of internal blocks
with δ ≥ 2, which all have the search tree property [`(vi), r(vi)] ⊃ (`(vi+1), r(vi+1)) 3 q. Our
bound on the number of block reads of the range search in RBSTs will use the results of the
next section and is thus presented at the end of it.

I Lemma 2. Let X be a set of n keys, q ∈ R \X, and 2 ≤ α an integer. The expected value
of random variable Dq, i.e. the number of primary tree nodes that have q in their interval, is
at most E[Dq] ≤ 5 logα n. The expected number of secondary tree notes (i.e. δ < α+ 1) that
have q in their interval is O(1/ε). In particular, the expected number of blocks in the search
path of q is O(ε−1 + logα n).

The block structure of RBSTs do not allow a clear extension of Seidel’s analysis of the
Treap based on ‘Ancestor-Events’ [18] or the backward-analysis of point-location cost in
geometric search structures [8, Chapter 6.4]. Our proof technique is vaguely inspired by
a top-down analysis technique of randomized algorithms for static problems that consider
‘average conflict list’ size. However, several new ideas are needed to analyze a dynamic setting
where the location q is user-specified and not randomly selected by the algorithm. Our proof
uses a partition in layers whose size increase exponentially with factor α and a bidirectional
counting process of keys in a layer of that partition.

Proof. Partition {1, . . . , n} with intervals of the form [αi, αi+1) for indices 0 ≤ i ≤ blogα nc.
E.g. permutation π induces an assignment of keys x ∈ X to an unique layer index, i.e. i with
π(x) ∈ [αi, αi+1). For internal node v let p∗(v) = min{π(x) : x is stored in v} and p†(v) is
the maximum over the set. Note that p∗(v)+α−1 ≤ p†(v), since every primary node contains

10 B-Treaps Revised: Write Efficient Randomized Block Search Trees with High Load

exactly α keys. Thus, Dq counts nodes v that either have both p∗(v), p†(v) ∈ [αi, αi+1) or
have that p†(v) has a larger layer index than i. We bound the expected number of nodes
of the first kind, since there are in the worst case at most blogα nc from the second kind.
Defining for every layer index i a random variable Vi that counts the tree nodes in that layer

Vi(π) =
∣∣∣{v ∈ TX(π) : `(v) < q < r(v) and p∗(v), p†(v) ∈ [αi, αi+1)

}∣∣∣ ,

we have that Dq ≤ blogα nc+ V , where V =
∑
i≥0 Vi is the total number of blocks of the

first kind. The reminder of the proof shows expectation bounds for Vi.
Let Ki = {x ∈ X : π(x) < αi+1} for each index i, K−i = {x ∈ Ki : x < q}, and

K+
i = Ki \K−i . Thus, Ki ⊂ Ki+1, and |Ki|= αi+1 − 1. Define Y −i to be the number of

consecutive keys form K−i that are less than q but not contained in Ki−1. Analogously,
random variable Y +

i counts those larger than q and Yi := Y −i + Y +
i is the number of

consecutive keys of Ki, whose range contain q, but do not contain elements from Ki−1. Since
all keys in a primary tree node are active separators, we have Vi(π) ≤ Yi(π)/α for every
π ∈ Perm(n).

Next we bound E[Y −i] based on a sequence of binary events: Starting at q, we consider
the elements x ∈ K−i in descending key-order and count as ‘successes’ if x ∈ Ki \Ki−1 until
one failure (x ∈ Ki−1) is observed. If K−i has no more elements, the experiment continues
on K+

i in ascending key order. Defining Zi as the number of successes after termination, we
have Y −i (π) ≤ Zi(π). The probability to obtain failure, after observing j successes, is |Ki−1|

|Ki|−j ,
which is at least pi := |Ki−1|

|Ki| for all j ≥ 0 and i > 0.
Hence Pr[Zi = j] ≤ Pr[Z ′i = j + 1] where random variable Z ′i ∼ NB(1, pi), i.e. the

number of trials to obtain one failure in a sequence of independent Bernoulli trials with
failure probability pi. Since E[Z ′i] = 1/pi, we have

E[Y −i] ≤ E[Zi] < E[Z ′i] = 1/pi = αi+1 − 1
αi − 1 <

α

1− 1/αi . (1)

We thus have E[Vi] ≤ E[Yi]/α <
2
α

α

1− 1/αi ≤ 4 for all α ≥ 2, which shows the lemma’s

statement for the primary tree nodes (that have δ = α+ 1).
Since there are in the worst case O(1/ε) nodes with fan-out δ ≤ 1 on a search path, it

remains to bound the expected number of secondary nodes with 2 ≤ δ(n′) ≤ α on a search
path, where n′ := |X(v)| is the subtree weight of top-most buffering node v on the search
path. For any fixed n′, this random variable only depends on the relative order of the n′
keys, which are uniform from Perm(n′). Since the expected number of keys in either of the
δ(n′) sections is (n′ − α)/δ(n′), the expected number of keys in section of q has an upper
bounded of the form (n′ − α)/δ(n′) = O(α/ε). Since the bound holds for all n′, the bound
holds unconditional. Consequently, the lemma’s O(1/ε) expectation bound on the nodes
follows from the fact that all secondary nodes (with δ ≥ 2) store exactly α keys. J

We will use this technique again in the analysis of the structural change in Section 5.
From the Layer Partition in our previous proof, we obtain an upper bound on the expected
weight of a subtree, subject to an update, of the form

∑
i
αi+1−αi

n
n−αi+1
αi−1 = O(α logα n). In

the reminder of the paper, we will derive the tools to show that the expected structural
change of an update, i.e. the number of block writes, is bounded within a (1/α2)-factor of
this bound.

Roodabeh Safavi and Martin P. Seybold 11

4 Bounds on Size using a Top-Down Analysis

Our analysis will frequently use the following characterization of the partitions of a set X of
n keys that are induced by the α elements of the smallest priority values from the set.

IObservation 3. There is a bijective mapping between the partitions on n keys, induced by the
first α keys from π ∈ Perm(n), and the solutions to the equation X1 +X2 +· · ·+Xα+1 = n−α,
where the variables Xi are non-negative integers. This bijection implies that the solutions of
the equation happen with the same probability.

In other word, Xi is the number of keys in the i-th section beneath the root of TX , where
1 ≤ i ≤ α+ 1. Thus, Xi can be considered as the number of consecutive keys from X that
are between the i-th and (i+ 1)-th key stored in the root. For example, in an RBST on the
keys {1, . . . , 10} and block size α = 3, a root block consisting of the key values 4, 7, 8 is
characterized by the assignment X1 = 3, X2 = 2, X3 = 0, X4 = 2.

Next we analyze the effect of our secondary structures, since the size of RBSTs without
buffer (β = 0) can be dramatically large. For example, the expected number of blocks E[S]
for subtrees of size n = 2α is

E[S] = 1 + Pr[X1 > 0] + · · ·+ Pr[Xα+1 > 0]

= 1 + (α+ 1)
(

1−
(
n− 1
α− 1

)
/

(
n

α

))
= 1 + (α+ 1)(1− α/n) = 1 + (α+ 1)/2 .

Note that in this example, buffering stores the whole subtree using only one additional block.

4.1 Buffering for UR trees with load-factor 1− ε

Our top-down analysis of the expected size, and thus load-factors, of (α, ε)-RBSTs frequently
uses the following counting and index exchange arguments.

I Lemma 4 (Exchange). We have Pr[Xi < c] = Pr[Xj < c] for all i, j ∈ {1, . . . , α+ 1}.

Proof. Due to Observation 3, each solution to X1 + · · · + Xα+1 = n − α occurs with the
same probability. Hence, we can calculate Pr[Xi ≥ c] by counting the number of solutions
where Xi ≥ c and dividing it by the total number of solutions. Thus

Pr[Xi < c] = 1− Pr[Xi ≥ c] = 1−
(
n−c
α

)(
n
α

) = 1− Pr[Xj ≥ c] = Pr[Xj < c] ,

as stated. J

Next, we show an upper bound for the size of an (α, ε)-RBST with n keys, where the
priorities are from a uniform distribution over the permutations in Perm(n). Our analysis
crucially relies on the basic fact that restricting Perm(n) on an arbitrary key subset of
cardinality n′ < n yields the uniform distribution on Perm(n′). Random variable Sn denotes
the space, i.e. the number of blocks used by the RBST on a set of n keys, Fn denotes the
number of full blocks, and En := Sn − Fn the number of non-full blocks. Next we show a
probability bound for the event that a given section, say k, contains a number of keys Xk of
a certain range.

I Lemma 5. For any 1 ≤ k ≤ α+ 1 and i < j, we have
∑j
x=i Pr[Xk = x] = (n−iα)−(n−1−j

α)
(nα)

.

Proof. We have Pr[Xk ≥ i] =
(
n−i
α

)
/
(
n
α

)
and Pr[Xk ≥ j + 1] =

(
n−(j+1)

α

)
/
(
n
α

)
. J

12 B-Treaps Revised: Write Efficient Randomized Block Search Trees with High Load

These basic facts allow us to compute the following expressions.

I Lemma 6. We have
∑m
x=1 Pr[Xk = x]x =

((
n
α+1
)
−
(
n−m
α+1

)
−m

(
n−1−m

α

))
/
(
n
α

)
.

Proof. By elementary computation, we have
m∑
x=1

Pr[Xk = x]x =
m∑
x=1

Pr[Xk = x] +
m∑
x=2

Pr[Xk = x] + · · ·+
m∑

x=m
Pr[Xk = x]

=
(
n−1
α

)
−
(
n−1−m

α

)(
n
α

) + . . .+
(
n−m
α

)
−
(
n−1−m

α

)(
n
α

)
=

m∑
i=1

(
n−i
α

)(
n
α

) −m(n−1−m
α

)(
n
α

) . (2)

Note that an RBST on n+ 1 keys with block size α+ 1 has Pr[X1 = i] = (n−iα)
(n+1
α+1)

. Thus, we
have from Lemma 5 that

m∑
i=1

Pr[X1 = i] =
m∑
i=1

(
n−i
α

)(
n+1
α+1
) =

((n+1)−1
α+1

)
−
((n+1)−1−m

α+1
)(

n+1
α+1
) (3)

⇒
m∑
i=1

(
n− i
α

)
=
(

n

α+ 1

)
−
(
n−m
α+ 1

)
(4)

and the lemma follows by using (4) for the summation in (2). J

We are now ready to prove our size bound.

I Theorem 7 (Size). The expected number of non-full blocks in an n key (α, ε)-RBST, E[En],
is at most max{εn/α, 1}.

Our proof is by induction on n, where the base cases are due to bounds on the number of
non-full blocks that are occupied by the secondary buffer structures (see Appendix A).

Proof. Observation 15 states that En ≤ 1 for all n with δn = 1. Moreover, Theorem 18
shows that E[En] ≤ 27δn for n ≤ β + α = (α+ 1)ρ+ α. For simplicity, we will use t and γ
instead of ρ+ α and (α+ 1)ρ+ α respectively. We can conclude from Theorem 18 that for
t < n ≤ γ,

E[En] ≤ 27
⌈
n− α
ρ

⌉
= 27

⌈
n− α

108α/ε

⌉
≤ 27

(
n− α

108α/ε + 1
)
≤ 27 · 2 n− α

108α/ε = n− α
2α/ε .

The last inequality holds because n > ρ+ α = 108α/ε+ α and n−α
108α/ε > 1.

For n > γ, we prove the theorem by induction. For each index i ∈ {1, . . . , α+ 1}, define
Yi as the number of non-full blocks in the i-th section beneath the root (of an RBST with
n keys). Note that Yi only depends on Xi, i.e. the number of keys in the i-th section, and
their relative priorities. We thus have

E[Yi] =
n−α∑
xi=1

Pr[Xi = xi] · E[Exi]

Roodabeh Safavi and Martin P. Seybold 13

≤
t∑

xi=1
Pr[Xi = xi] · 1 +

γ∑
xi=t+1

Pr[Xi = xi]
xi

2α/ε +
n−α∑

xi=γ+1
Pr[Xi = xi]

xi
α/ε

(5)

=
(

t∑
xi=1

Pr[Xi = xi] +
γ∑

xi=t+1
Pr[Xi = xi]

)
−

γ∑
xi=t+1

Pr[Xi = xi]

+
(

γ∑
xi=t+1

Pr[Xi = xi]
xi

2α/ε −
γ∑

xi=t+1
Pr[Xi = xi]

xi
α/ε

)
− 2

t∑
xi=1

Pr[Xi = xi]
xi

2α/ε

+
(

t∑
xi=1

Pr[Xi = xi]
xi
α/ε

+
γ∑

xi=t+1
Pr[Xi = xi]

xi
α/ε

+
n−α∑

xi=γ+1
Pr[Xi = xi]

xi
α/ε

)
(6)

=
(

γ∑
xi=1

Pr[Xi = xi]−
γ∑

xi=t+1
Pr[Xi = xi]

xi
2α/ε −

t∑
xi=1

Pr[Xi = xi]
xi

2α/ε

)

+
n−α∑
xi=1

Pr[Xi = xi]
xi
α/ε
−

t∑
xi=1

Pr[Xi = xi]
xi

2α/ε −
γ∑

xi=t+1
Pr[Xi = xi] (7)

≤
γ∑

xi=1
Pr[Xi = xi]

(
1− xi

2α/ε

)
+ E[Xi]

α/ε
(8)

Using Lemma 4, we have that the summation term has equal value for each section
i ∈ {1, . . . , α+ 1}. Since, for n ≥ α, the root is full and not counted in En, we have

E[En] = E[Y1 + ...+ Yα+1] ≤ (1 + α)
γ∑

x1=1
Pr[X1 = x1]

(
1− x1

2α/ε

)
+ n− α

α/ε
. (9)

To proof the inequality it suffices to show that the right-hand side of (9) is at most
εn
α . This is true if and only if (1 + α)

∑γ
x1=1 Pr[X1 = x1]

(
1− ε x1

2α
)
≤ ε. Since ε > 0 and

α+ 1 > 0, it suffices to show that the value of the sum is not positive. This is if and only if
γ∑

x1=1
Pr[X1 = x1] ≤ ε

2α

γ∑
x1=1

Pr[X1 = x1]x1 . (10)

Use Lemma 5 on the left-hand side and Lemma 6 on the right-hand side, it remains to show
that

2α
ε

(
n− 1
α

)
− 2α

ε

(
n− 1− γ

α

)
≤
(

n

α+ 1

)
−
(
n− γ
α+ 1

)
− γ
(
n− 1− γ

α

)
. (11)

By elementary computation, this inequality holds for all n > γ. (See Appendix B Lemma 19
for a full proof of this claim.) J

Since each full block contains α distinct keys, i.e. Fn ≤ n/α, we showed that Sn ≤
(1 + ε)n/α. Thus, we obtain for the load-factor L, i.e. the relative utilization of keys in
allocated blocks, the following lower bound.

I Corollary 8 (Load-Factor). Let ε ∈ (0, 1/2] and n ≥ α+ β. The expected number of blocks
occupied by an (α, ε)-RBST on n keys is at most (1 + ε)n/α, i.e. the expected load-factor is
at least 1− ε.

Proof. The load-factor is the random variable L = n/αSn. Since φ(x) = 1/x is a convex
function, Jensen’s inequality gives 1/E[X] ≤ E[1/X]. Using Lemma 7, we have E[L] ≥
n
α

1
(1+ε)n/α = 1

1+ε ≥ 1− ε. J

14 B-Treaps Revised: Write Efficient Randomized Block Search Trees with High Load

Combining the results of Lemma 2 and Theorem 7, we showed the following bound for
reporting all results of a range-search in RBSTs.

I Corollary 9 (Range-Search). Let ε ∈ (0, 1/2]. The expected number of block reads to report
all results of a range search in (α, ε)-RBSTs is at most O(ε−1 + k/α+ logα n), where k is
the number of result keys.

We are now ready to show our bound of the write-efficiency of (α, ε)-RBSTs.

5 Bounds for Dynamic Updates based on Partial-Rebuilding

The weight-proportional fan-out in the design of our secondary UR tree structure has the
advantage, in comparison to the use of a simple list of O(β/α) blocks, that it avoids the need
of additional restructuring work whenever a subtree must change its state between buffering
and non-buffering, due to updates (cf. Section 2.1). Together with the space bound from
last section and the observation that the partial-rebuild algorithm for updating RBSTs only
rebuilds at most 3 subtrees beneath the affected node, regardless of its fan-out, allows us to
show our bound on the expected structural change in this section.

I Theorem 10. Let ε ∈ (0, 1/2]. The expected total structural change of an update in an n
key (α, ε)-RBST is O

(
1
ε + logα n

α

)
, i.e. O(1/ε) for α = Ω(log(n)/log log(n)).

Proof. It suffices to bound the expectation of the total structural change for deleting a key
x from the RBST, since the case of insertion of the key would count the same number of
blocks. Let X ′ = X ∪ {x} be the set of keys before and after the deletion of x respectively,
where |X ′|= n. For the subtree root v that is subject to the partial rebuild algorithm from
Section 2.1, there are three cases, i.e. δv ≤ 1, δv ∈ [2, α], and δv = α+ 1.

For δv ≤ 1, we have in the worst case at most O(1/ε) blocks in the buffer’s list that are
modified.

For δv = α+ 1, v is a node of the primary tree and we consider the the layer partition of
the priority values {1, . . . , n} in intervals of the form [αi, αi+1) for integer i < logα n. The
probability that the priority of key x falls in the interval of layer i is Pr[π(x) ∈ [αi, αi+1)] =
αi+1−αi

n ≤ αi+1/n. For layer i, let K = {x′ ∈ X : π(x′) < αi} be the set of separators that
partition the keys with priorities ≥ αi, let random variable Y (π) be the number of keys of
X \K that are in the same section as x. Thus, for all permutations π, the weight of the
subtree of v is at most |X(v)|≤ Y . Using the characterization of Observation 3, we also have
that total expected weight of three, from the α+ 1, subtrees of v is at most 3

α+1Y . Clearly,
E[Y] =

∑
n′ n
′ Pr[Y = n′] by definition and we have E[Y] = O(n−α

i

αi) = O(n/αi) from direct
calculation. Note that the key count n′ per section is regardless of their relative order, i.e.
each of the (n′)! orders is equally likely. Thus, Theorem 7 implies that the expected number
of blocks in an RBST on 3

α+1n
′ keys is bounded within a 1+ε

α factor. Thus, for x in layer i,
the expected number of blocks m′ in the three subtrees of v is at most

E[m′ | π(x) ∈ [αi, αi+1)] =
∑
n′

E[m′ | π(x) ∈ [αi, αi+1) , Y = n′] Pr[Y = n′] (12)

≤
∑
n′

1 + ε

α

(
3

α+ 1n
′
)

Pr[Y = n′] (13)

= 3 1 + ε

α(α+ 1)E[Y] = O(n/αi+2) . (14)

Roodabeh Safavi and Martin P. Seybold 15

Consequently, the expected number of block writes is at most

E[m′] =
blogα nc∑
i=0

E
[
m′ | π(x) ∈ [αi, αi+1)

]
Pr
[
π(x) ∈ [αi, αi+1)

]
≤
∑
i

O
(n

αi+2

) αi+1

n
= O

(
logα n
α

)
.

For δv ∈ [2, α], v is a node of the secondary tree and we have its subtree weight n′ that
n′ = Θ(δvα/ε). Thus, Eq. (13) is

∑
n′

1+ε
α

3
δv

Θ(δvα/ε) Pr[Y = n′] = O(1/ε) for this case. J

References
1 Arne Andersson and Thomas Ottmann. New Tight Bounds on Uniquely Represented Dictio-

naries. SIAM J. Comput., 24(5):1091–1101, 1995. doi:10.1137/S0097539792241102.
2 Ricardo A. Baeza-Yates. The expected behaviour of b+-trees. Acta Informatica, 26(5):439–471,

1989. doi:10.1007/BF00289146.
3 Rudolf Bayer and Edward M. McCreight. Organization and maintenance of large ordered

indices. Acta Informatica, 1:173–189, 1972. doi:10.1007/BF00288683.
4 Michael A. Bender, Martin Farach-Colton, Jeremy T. Fineman, Yonatan R. Fogel, Bradley C.

Kuszmaul, and Jelani Nelson. Cache-oblivious streaming b-trees. In Phillip B. Gibbons and
Christian Scheideler, editors, SPAA, page 81–92. ACM, 2007. URL: https://doi.org/10.
1145/1248377.1248393.

5 Guy E. Blelloch and Daniel Golovin. Strongly History-Independent Hashing with Applications.
In Proc. of the 48th Symposium on Foundations of Computer Science (FOCS’07), page 272–282,
2007. doi:10.1109/FOCS.2007.36.

6 Guy E. Blelloch, Daniel Golovin, and Virginia Vassilevska. Uniquely Represented Data
Structures for Computational Geometry. In Joachim Gudmundsson, editor, Algorithm Theory
- SWAT 2008, 11th Scandinavian Workshop on Algorithm Theory, Gothenburg, Sweden, July 2-
4, 2008, Proceedings, volume 5124 of Lecture Notes in Computer Science, page 17–28. Springer,
2008. doi:10.1007/978-3-540-69903-3_4.

7 Gerth Stølting Brodal and Rolf Fagerberg. Lower bounds for external memory dictionaries.
In Proc. of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’03), page
546–554, 2003. URL: https://dl.acm.org/doi/10.5555/644108.644201.

8 Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. Com-
putational Geometry: Algorithms and Applications, 3rd Edition. Springer, 2008. doi:
10.1007/978-3-540-77974-2.

9 Amr Elmasry, Mostafa Kahla, Fady Ahdy, and Mahmoud Hashem. Red-black trees with con-
stant update time. Acta Informatica, 56(5):391–404, 2019. doi:10.1007/s00236-019-00335-9.

10 John Esmet, Michael A. Bender, Martin Farach-Colton, and Bradley C. Kuszmaul. The
tokufs streaming file system. In HotStorage. USENIX Association, 2012. URL: https:
//www.usenix.org/conference/hotstorage12/workshop-program/presentation/esmet.

11 Daniel Golovin. Uniquely represented data structures with applications to privacy. PhD thesis,
Carnegie Mellon University, 2008.

12 Daniel Golovin. B-Treaps: A Uniquely Represented Alternative to B-Trees. In Proc. of the
36th International Colloquium on Automata, Languages, and Programming (ICALP’09), page
487–499, 2009. doi:10.1007/978-3-642-02927-1_41.

13 William Jannen, Jun Yuan, Yang Zhan, Amogh Akshintala, John Esmet, Yizheng Jiao, Ankur
Mittal, Prashant Pandey, Phaneendra Reddy, Leif Walsh, Michael A. Bender, Martin Farach-
Colton, Rob Johnson, Bradley C. Kuszmaul, and Donald E. Porter. Betrfs: A right-optimized
write-optimized file system. In FAST, page 301–315. USENIX Association, 2015. URL: https:
//www.usenix.org/conference/fast15/technical-sessions/presentation/jannen.

https://doi.org/10.1137/S0097539792241102
https://doi.org/10.1007/BF00289146
https://doi.org/10.1007/BF00288683
https://doi.org/10.1145/1248377.1248393
https://doi.org/10.1145/1248377.1248393
https://doi.org/10.1109/FOCS.2007.36
https://doi.org/10.1007/978-3-540-69903-3_4
https://dl.acm.org/doi/10.5555/644108.644201
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1007/s00236-019-00335-9
https://www.usenix.org/conference/hotstorage12/workshop-program/presentation/esmet
https://www.usenix.org/conference/hotstorage12/workshop-program/presentation/esmet
https://doi.org/10.1007/978-3-642-02927-1_41
https://www.usenix.org/conference/fast15/technical-sessions/presentation/jannen
https://www.usenix.org/conference/fast15/technical-sessions/presentation/jannen

16 B-Treaps Revised: Write Efficient Randomized Block Search Trees with High Load

14 Donald E. Knuth. The Art of Computer Programming, Volume III: Sorting and Searching.
Addison-Wesley, 1973.

15 Klaus Küspert. Storage Utilization in B*-Trees with a Generalized Overflow Technique. Acta
Informatica, 19:35–55, 1983. doi:10.1007/BF00263927.

16 Ketan Mulmuley. Computational Geometry: An Introduction Through Randomized Algorithms.
Prentice Hall, 1994.

17 Moni Naor and Vanessa Teague. Anti-presistence: history independent data structures. In
Proc. of 33rd Symposium on Theory of Computing (STOC’01), page 492–501, 2001. doi:
10.1145/380752.380844.

18 Raimund Seidel and Cecilia R. Aragon. Randomized Search Trees. Algorithmica,
16(4/5):464–497, 1996. doi:10.1007/BF01940876.

19 Lawrence Snyder. On uniquely represented data strauctures. In 18th Annual Symposium on
Foundations of Computer Science (SFCS’77), page 142–146, 1977. doi:10.1109/SFCS.1977.
22.

20 Rajamani Sundar and Robert Endre Tarjan. Unique Binary-Search-Tree Representations
and Equality Testing of Sets and Sequences. SIAM J. Comput., 23(1):24–44, 1994. doi:
10.1137/S0097539790189733.

21 Jeffrey Scott Vitter. External memory algorithms and data structures. ACM Comput. Surv.,
33(2):209–271, 2001. doi:10.1145/384192.384193.

22 Andrew Chi-Chih Yao. On Random 2-3 Trees. Acta Informatica, 9:159–170, 1978. doi:
10.1007/BF00289075.

A Induction Base Case: Expected Size of Buffering Trees

I Lemma 11. Let X1, . . . , Xm be some non-negative integral random variables where X1 +
X2 + · · ·+Xm = n. For integers n ≥ 1 and t ≤ n, we have the tail-bounds(

1− t

n+ 1

)m−1
≤ Pr[Xi ≥ t] ≤

(
1− t

n+m− 1

)m−1

Proof.

Pr[Xi ≥ t] =
(
n−t+m−1
m−1

)(
n+m−1
m−1

) = (n− t+m− 1)! (n− t)! (m− 1)!
(n+m− 1)! n! (m− 1)!

= n− t+m− 1
n+m− 1

n− t+m− 2
n+m− 2 . . .

n− t+m− (m− 1)
n+m− (m− 1)

=
(

1− t

n+m− 1

)(
1− t

n+m− 2

)
. . .

(
1− t

n+m− (m− 1)

)
Since for 1 ≤ i ≤ m− 1, t

n+m−1 ≤
t

n+m−i ≤
t

n+m−(m−1) = t
n+1 , the lemma holds. J

I Lemma 12. For 0 < c ≤ a ≤ b, we have a−c
b−c ≤

a
b .

Proof. a−c
b−c ≤

a
b ⇐⇒ ab− bc ≤ ab− ac⇐⇒ a ≤ b. J

For a subtree of size n ≤ β + α =: (α + 1)ρ + α, fan-out parameter δn = min{α +
1,max{1, dn−αρ e}} is equal to max{1, dn−αρ e}. Therefore, for n with 2 ≤ δn ≤ α+ 1, we have
(δn − 1)ρ+ α < n ≤ δnρ+ α. Moreover, for k ∈ {2, 3, . . . , δn}, n > (k − 1)ρ+ α if and only
if δn ≥ k.

https://doi.org/10.1007/BF00263927
https://doi.org/10.1145/380752.380844
https://doi.org/10.1145/380752.380844
https://doi.org/10.1007/BF01940876
https://doi.org/10.1109/SFCS.1977.22
https://doi.org/10.1109/SFCS.1977.22
https://doi.org/10.1137/S0097539790189733
https://doi.org/10.1137/S0097539790189733
https://doi.org/10.1145/384192.384193
https://doi.org/10.1007/BF00289075
https://doi.org/10.1007/BF00289075

Roodabeh Safavi and Martin P. Seybold 17

I Lemma 13. For a subtree of size n ≤ β + α, where δn ≤ α+ 1, and all k ∈ {2, 3, . . . , δn},
we have

Pr[δXi ≥ k] = Pr[Xi > (k − 1)ρ+ α] ≤
(

1− k − 1
δn

)δn−1
,

where Xi is the number of keys in the i-th section beneath the root.

Proof.

Pr[Xi > (k − 1)ρ+ α] = Pr[Xi ≥ (k − 1)ρ+ α+ 1]

Set variables m, t, and n of Lemma 11 to δn, (k − 1)ρ+ α+ 1, and n− α respectively. We
have

Pr[Xi ≥ (k − 1)ρ+ α+ 1] ≤
(

1− (k − 1)ρ+ α+ 1
n− α+ δn − 1

)δn−1
.

Since n ≤ δnρ+ α, we have

Pr[Xi > (k − 1)ρ+ α] ≤
(

1− (k − 1)ρ+ α+ 1
δnρ+ α− α+ δn − 1

)δn−1

Using Lemma 12, we subtract δn − 1 from the numerator and denominator of (k−1)ρ+α+1
δnρ+α−α+δn−1 .

Thus

Pr[Xi > (k − 1)ρ+ α] ≤
(

1− (k − 1)ρ+ α+ 1− (δn − 1)
δnρ

)δn−1
.

Since δn is at most α+ 1, we have α+ 1− (δn − 1) is positive and conclude

Pr[Xi > (k − 1)ρ+ α] ≤
(

1− (k − 1)ρ
δnρ

)δn−1
=
(

1− k − 1
δn

)δn−1
,

as stated. J

We will combine the results of Lemmas 13 and 12 and get the following result.

I Corollary 14. For 2 ≤ k ≤ δn, we have

Pr[δXi ≥ k] = Pr[Xi > (k − 1)ρ+ α] ≤
(

1− k − 1− 1
δn − 1

)δn−1
≤ e−(k−2) .

I Observation 15. For a subtree with δn = 1, the data structure is a simple list and has at
most one non-full block.

I Lemma 16. For a subtree with δn = 2, the expected number of non-full blocks E[En] ≤ 5.

Proof. We will design an algorithm calculating an upper bound on the number of non-full
blocks. The root has α keys, and the remaining keys are randomly split into two sections with
X1 and X2 keys, i.e. X1 +X2 = n−α. For i ∈ {1, 2}, if δXi = 1, there is at most one non-full
block, and the algorithm does not need to proceed in this section anymore. If δXi = 2, to
observe non-full blocks, the Xi−α keys should be partitioned again. It is impossible for both
X1 and X2 to have δXi = 2 since it implies that n = α+X1 +X2 ≥ α+ 2(ρ+ α) > 2ρ+ 3α,
which is a contradiction. So at each iteration, either the algorithm stops or continues with

18 B-Treaps Revised: Write Efficient Randomized Block Search Trees with High Load

one of the sections. In the last step, there are two sections each with at most one non-full
block. Thus, the expected number of iterations plus 1 is an upper bound on E[En].

Clearly, E[En] is indeed an increasing function of n, so losing α keys of the root at each
iteration results in fewer non-full blocks. To obtain a weaker upper bound, we assume that
at each step, the key with the highest priority splits the n − 1 remaining keys, instead of
n− α keys, into two new sections. These keys include the α− 1 other keys of the root as
well. It suffices to show that the expected number of iterations is at most 4.

At iteration k, k keys with the highest priorities split n keys into k sections with
Y

(k)
1 , Y

(k)
2 , . . . , Y

(k)
k keys, where Y (k)

1 + Y
(k)

2 + · · ·+ Y
(k)
k = n− k. Round k+ 1 occurs if any

of Y (k)
i s exceeds ρ+ α. Since k top keys are chosen uniformly at random, all solutions to the

equation Y (k)
1 + Y

(k)
2 + · · ·+ Y

(k)
k = n− k have equal probabilities. Next, we find an upper

bound on Pr[Y (k)
i > ρ+ α] for i ∈ {1, . . . , k}. Set parameters m, t, and n of Lemma 11 to k,

ρ+ α, and n− k respectively. Thus

Pr[Y (k)
i > ρ+ α] ≤

(
1− ρ+ α+ 1

n− k + k − 1

)k−1

≤
(

1− ρ+ α− 1
n− 1

)k−1
.

Since n is at least 2ρ+ α, we have

Pr[Y (k)
i > ρ+ α] ≤

(
1− ρ+ α− 1

2ρ+ α− 1

)k−1

≤
(

1− ρ

2ρ

)k−1
= 2−(k−1) .

The last inequality is an application of Lemma 12. Using the union bound, we have

Pr[∃Y (k)
i > ρ+ α] ≤ k/2k−1 .

Define Z to be the number of iterations and Zk to be an indicator random variable of whether
the k-th iteration happened. It follows that

E[Z] =
∞∑
k=1

E[Zk] =
∞∑
k=1

Pr[Zk = 1]

≤
∞∑
k=1

k/2k−1 = 2(
∞∑
j=1

∞∑
k=j

2−k) = 2(
∞∑
j=1

2−j

1− 1
2

) = 2
2−1

1−1/2

1/2 = 4 .

J

I Lemma 17. For a subtree with δn = 3, the expected number of non-full blocks E[En] ≤ 10.

Proof. n− α keys beneath the root are separated into three sections with X1, X2, and X3
keys. Same as Lemma 16, we can prove that it is impossible to have δXi ≥ 2 for every
i ∈ {1, 2, 3}, or δXi = δXj = 3 for some i 6= j ∈ {1, 2, 3}. Due to the symmetric property of
the random variables Xi, we can conclude

1 = 3 Pr[δX1 = 3 ∧ δX2 = 1 ∧ δX3 = 1]
+ 3 Pr[δX1 = 3 ∧ δX2 = 2 ∧ δX3 = 1]
+ 3 Pr[δX1 = 2 ∧ δX2 = 1 ∧ δX3 = 1]

Roodabeh Safavi and Martin P. Seybold 19

+ Pr[δX1 = 1 ∧ δX2 = 1 ∧ δX3 = 1] .

Next, we would do induction on 2ρ+ α < n ≤ 3ρ+ α. Using Observation 15, Lemma 16,
and induction hypothesis, we get

E[En] ≤ 3 Pr[δX1 = 3 ∧ δX2 = 1 ∧ δX3 = 1](10 + 1 + 1)
+ 3 Pr[δX1 = 2 ∧ δX2 = 2 ∧ δX3 = 1](5 + 5 + 1)
+ 3 Pr[δX1 = 2 ∧ δX2 = 1 ∧ δX3 = 1](5 + 1 + 1)
+ Pr[δX1 = 1 ∧ δX2 = 1 ∧ δX3 = 1](1 + 1 + 1)

< 3 Pr[δX1 = 3 ∧ δX2 = 1 ∧ δX3 = 1](12− 7)
+ 3 Pr[δX1 = 2 ∧ δX2 = 2 ∧ δX3 = 1](11− 7)
+ 7(3 Pr[δX1 = 3 ∧ δX2 = 1 ∧ δX3 = 1]
+ 3 Pr[δX1 = 2 ∧ δX2 = 2 ∧ δX3 = 1]
+ 3 Pr[δX1 = 2 ∧ δX2 = 1 ∧ δX3 = 1]
+ Pr[δX1 = 1 ∧ δX2 = 1 ∧ δX3 = 1])

= 3 Pr[δX1 = 3 ∧ δX2 = 1 ∧ δX3 = 1]5 + 3 Pr[δX1 = 2 ∧ δX2 = 2 ∧ δX3 = 1]4 + 7
≤ 7 + 3 Pr[δX1 ≥ 3]5 + 3 Pr[δX1 ≥ 2 ∧ δX2 ≥ 2]4 .

Corollary 14 implies that Pr[δX1 ≥ 3] ≤ 1
9 . To complete the proof we show that Pr[δX1 ≥

2 ∧ δX2 ≥ 2] ≤ 1
9 . Consequently, we get the desired inequality E[En] ≤ 7 + 3 5

9 + 3 4
9 = 10.

The two top-priority keys split the keys into three parts with Y1, Y2, and Y3 keys, where
Y1 + Y2 + Y3 = n− 2. The i-th part includes all Xi keys beneath the root and some extra
keys from the root, so for each i ∈ {1, 2, 3}, we have Xi ≤ Yi.

Pr[δX1 ≥ 2 ∧ δX2 ≥ 2] = Pr[X1 ≥ ρ+ α+ 1 ∧X2 ≥ ρ+ α+ 1]
≤ Pr[Y1 ≥ ρ+ α+ 1 ∧ Y2 ≥ ρ+ α+ 1]

=
(
n−2(ρ+α+1)

2
)(

n
2
)

Same technique of Lemma 11 yields(
n−2(ρ+α+1)

2
)(

n
2
) ≤

(
1− 2(ρ+ α+ 1)

n

)2
.

Combining the previous inequalities together with n ≤ 3ρ+ α implies

Pr[δX1 ≥ 2 ∧ δX2 ≥ 2] ≤
(

1− 2(ρ+ α+ 1)
3ρ+ α

)2
.

Subtract α from the numerator and denominator. By Lemma 12, we have:

Pr[δX1 ≥ 2 ∧ δX2 ≥ 2] ≤
(

1− 2ρ+ α+ 2
3ρ

)2
≤
(

1− 2ρ
3ρ

)2
= 1

9 ,

as required. J

I Theorem 18. For a subtree of size n ≤ β+α, we have that the expected number of non-full
blocks E[En] ≤ 27 · δn.

20 B-Treaps Revised: Write Efficient Randomized Block Search Trees with High Load

Proof. We will prove the statement by induction on n. Observation 15, Lemma 16, and
Lemma 17 provide the bases of the induction. The problem is divided into subproblems by
using random variables X1, . . . , Xδn .

E[En] = E[EX1] + E[EX2] + · · ·+ E[EXδn] = δnE[EX1]

Note that Xi ≤ n− α, so the induction assumption is applicable to it. For n ≥ 4ρ+ α, we
will use the induction assumption and bases to obtain

E[EXi] ≤ Pr[δXi = 1] · 1 + Pr[δXi = 2] · 5 + Pr[δXi = 3] · 10 +
δn∑
k=4

Pr[δXi = k] · (27 · k)

< Pr[δXi = 1] · 10 + Pr[δXi = 2] · 10 + Pr[δXi = 3] · 10 +
δn∑
k=4

Pr[δXi = k] · (27 · k)

= 10 Pr[1 ≤ δXi ≤ 3] + 27
δn∑
k=4

Pr[δXi = k] · k

≤ 10 + 27
δn∑
k=4

Pr[δXi = k] · k

We can rewrite
∑δn
k=4 Pr[δXi = k] · k to 3 Pr[δXi ≥ 4] +

∑δn
k=4 Pr[δXi ≥ k]. Then by using

Corollary 14, we get

E[EXi] ≤ 10 + 27(3 Pr[δXi ≥ 4] +
δn∑
k=4

Pr[δXi ≥ k])

≤ 10 + 27
(

3e−2 +
∞∑
k=4

e−(k−2)

)

≤ 10 + 27
(

3
e2 +

∞∑
k=2

e−k

)

= 10 + 27
(

3
e2 + e−2

1− e−1

)
≤ 10 + 0.6202× 27 < 27 ,

as stated. J

B Additional Proofs

I Lemma 19. Consider a subtree with n > γ keys, where γ is equal to β +α = (α+ 1)ρ+α.
We have:

2α
ε

(
n− 1
α− i

)
− 2α

ε
a

(
n− 1− γ
α− i

)
≤
(

n

α+ 1− i

)
−
(

n− γ
α+ 1− i

)
− γ
(
n− 1− γ
α− i

)
.

Proof. The proof is by induction on n. For n = γ + 1 the statement is

2α
ε

(
γ

α− i

)
≤
(

γ + 1
α+ 1− i

)
(15)

⇐⇒ 2α
ε

γ(γ − 1) . . . (γ − α+ i+ 1)
(α− i)! ≤ (γ + 1)γ . . . (γ − α+ i+ 1)

(α− i+ 1)(α− i)! (16)

⇐⇒ 2α
ε

(α− i+ 1) ≤ γ + 1 , (17)

Roodabeh Safavi and Martin P. Seybold 21

This is true because γ = (α+ 1)ρ+ α = 108(α+ 1)α/ε+ α > 2(α+ 1)α/ε.
Assume the lemma holds for each γ < m ≤ n. We will prove the lemma for n+ 1, e.g.

we will show:

2α
ε

(
n

α− i

)
− 2α

ε

(
n+ 1− 1− γ

α− i

)
≤
(

n+ 1
α+ 1− i

)
−
(
n+ 1− γ
α+ 1− i

)
− γ
(
n+ 1− 1− γ

α− i

)
holds for all i. The inequality is true for i = α− 1, since

2α
ε
n− 2α

ε
(n− γ) ≤ n(n+ 1)

2 − (n− γ)(n− γ + 1)
2 − γ(n− γ)

⇐⇒ 2α
ε
γ ≤ 2γn− γ2 + γ

2 − 2γn− 2γ2

2

⇐⇒ 2α
ε
γ ≤ 2n+ γ2 + γ

2 .

The right-hand side is greater than γ2+γ
2 . Hence, it suffices to observe that

2α
ε
γ ≤ γ2 + γ

2 ⇐⇒ 4α
ε
≤ γ + 1 = (α+ 1)ρ+ α+ 1 = (α+ 1)108α/ε+ α+ 1

which is true.
For i < α− 1, we will use the identity equation

(
m
k

)
=
(
m−1
k

)
+
(
m−1
k−1

)
together with the

induction assumption. We have

2α
ε

(
n

α− i

)
− 2α

ε

(
n− γ
α− i

)
= 2α

ε

(
n− 1

α− (i+ 1)

)
+ 2α

ε

(
n− 1
α− 1

)
− 2α

ε

(
n− 1− γ
α− (i+ 1)

)
− 2α

ε

(
n− 1− γ
α− i

)
=
[
2α
ε

(
n− 1

α− (i+ 1)

)
− 2α

ε

(
n− 1− γ
α− (i+ 1)

)]
+
[
2α
ε

(
n− 1
α− i

)
− 2α

ε

(
n− 1− γ
α− i

)]
≤
(

n

α+ 1− (i+ 1)

)
−
(

n− γ
α+ 1− (i+ 1)

)
− γ
(
n− 1− γ
α− (i+ 1)

)
+
(

n

α+ 1− i

)
−
(

n− γ
α+ 1− i

)
− γ
(
n− 1− γ
α− i

)
=
(

n+ 1
α+ 1− i

)
−
(
n+ 1− γ
α+ 1− i

)
− γ
(
n− γ
α− i

)
.

J

	1 Introduction
	1.1 Contribution and Paper Outline

	2 Randomized Block Search Trees
	2.1 Insertion and Deletion via Partial-Rebuilds

	3 Bounds for Searching and the Subtree Weight in RBSTs
	4 Bounds on Size using a Top-Down Analysis
	4.1 Buffering for UR trees with load-factor 1-

	5 Bounds for Dynamic Updates based on Partial-Rebuilding
	A Induction Base Case: Expected Size of Buffering Trees
	B Additional Proofs

