
A CERTIFIED DIGITAL SIGNATURE

Ralph C. Merkle
Xerox PARC

3333 Coyote Hill Rotid,
Palo Alto, Ca. 94304
merkle@xerox.com

(Subtitle: That Antique Paper from 1979)

Abstract
A practical digital signature system based on a conventional encryption
function which is as secure as the conventional encryption function is
described. Since certified conventional systems are available it can be
implemented quickly, without the several years delay required for
certification of an untested system.

Key Words and Phrases; Public Key Cryptosystem, Digital Signatures,
Cryptography, Electronic Signatures, Receipts, Authentication, Electronic
Funds Transfer.

CR categories: 3.56, 3.57, 4.9

1. Introduction

Digital signatures promise to revolutionize business by phone (or other
telecommunication devices1111 but currently known digital signature methods
[5,6,7,8,10,131 either have not been certified, or have other drawbacks. A
signature system whose security rested on the security of a conventional
cryptographic function would be “pre-certified” to the extent that the
underlying encryption function had been certified. The delays and cost of a
new certification effort would be avoided. Lamport and Diffie[l][lO] suggested
such a system, but it has severe performance drawbacks. Lipton and
Matyas[ll nonetheless suggested its use as the only near term solution to a
pressing problem.

This paper describes a digital signature system which is “pre-certified,”
generates signatures of about 1 to 3 kilobytes (depending on the exact
security requirements), requires a few thousand applications of the
underlying encryption function per signature, and only a few kilobytes of

This work was partially supported under contracts F49620-78-C-0086 from
the U.S. Air Force Office of Scientific Research and DAAG29-78-C-0036 from
the U.S. Army Research Office. Much of this work was done when the author
was at Stanford University in the Electrical Engineering Department, and
some was done when the author was at BNR in Palo Alto.

G. Brassard (Ed.): Advances in Cryptology - CRYPT0 ‘89, LNCS 435, pp. 218-238, 1990.

0 Springer-Verlag Berlin Heidelberg 1990

219

memory. If the underlying encryption function takes 10 microseconds to
encrypt a block, generating a signature might take 20 milliseconds.

The new signature method is called a “tree signature.” The following major
points are covered:

1.) A discussion of one way functions.
2.) A description of the Lamport-Diffie one time signature.
3.) An improvement to the Lamport-Diffie one time signature.
4.) The Winternitz one time signature.
5.) A description of tree signatures.

2. One Way Functions

One way functions[2,91 are basic to this paper. Intuitively, a one way
function F is one which is easy to compute but difficult to invert. If y = F(x),
then given x and F, i t is easy to compute y, but given y and F it is effectively
impossible to compute x.

Readers interested only in getting the gist of this paper are advised to skip
this section and continue with section 3.

We will parameterize F, i.e., create a family of one way functions F,, F , F, ...
Fi ..., to improve security. I t is easier to analyze a single function wiich is
used repeatedly than it is to analyze all the different Fi. Often i t is desirable
for Fi to also compress a large input (e.g. 10,000 bits) into a smaller output
(e.g. 100 bits). This will be referred to as a one way hash function and it is
required that, for all i:

1.) Fi can be applied to any argument of any size.
2.) Fi always produces a fixed size output, which, for the sake of

3.) Given x i t is easy to compute Fi(x).
4.) It is computationally infeasible to find x’ f x such that Fi(x) = Fi(x’).
5.) Given Fi(x) i t is computationally infeasible to determine x.

concreteness, we can assume is 100 bits.

An important point of notation: when we wish to concatenate two arguments
x1 and x2, we will write <x1,x2>. Thus, if x1 and x2 are both 100 bits long,
<x1,x2> will be their 200 bit concatenation.

The major use of one way functions is for authentication. If a value y can be
authenticated, we can authenticate x by computing:

No other input x’ can be found (although they probably exist) which will
generate y. A 100 bit y can authenticate an arbitrarily large x. This
property is crucial for the convenient authentication of large amounts of
information. (Although a 100 bit y is plausible, selection of the size in a real

Fib) = y

220

system involves tradeoffs between the reduced cost and improved efficiency of
a smaller size, and the improved security of a larger size.)

Functions such as F, can be defined in terms of conventional cryptographic
functions[61. We therefore assume we have a conventional encryption
function C(key,plaintext) which has a 300 bit key size and encrypts 100 bit
blocks of plaintext into 100 bit blocks of ciphertext.

In order to prove that F, is a good one way function, we must make some
assumptions about the conventional cryptographic function on which it is
based (Rabin has also considered this problem[l31). In particular, we require
that i t possess certain properties.

A "certified" encryption function C(k,p) = c, in which length(p) = length(c) <_
length(k1, must have the following properties:

1.) The average computational effort required to find any four values k,
k', p, and c such that C(k,p) = C - = C(k',p) and k-;t k' is greater
than 21'3n@h(p)12.

2.) The average computational effort required to find four values k, k', p,
and c such that C(k,p) = c = C(k',p) and k f k' is 21en@h(p)-1 if the
following conditions hold:

a.) The plaintext, p, is known and fixed.
b.) The key space is divided into mutually disjoint subsets S,, S2, ...
c.) k is a n element of the set {k k,, ... 1
d.) Each ki is randomly chosen &om S..
e.) Each Si must have a t least 21enpth(h) elements.
f.) both k and k' must be elements of the same subset Si.

For the rest of this paper, these will be referred to as "property 1" and
"property 2."

Property 1 is rather clear: finding two keys k and k' for the aame plaintext-
ciphertext pair requires a certain minimum computational effort under all
circumstances.

Property 2 requires more explanation. It states that finding two keys k
and k' for the same plaintext ciphertext pair requires a full exhaustive
search IF certain conditions are satisfied. (Notice that property 1, which
applies unconditionally, states that the required effort to find k and k' is
proportional to the square root of a simple exhaustive search.)

The most important condition is 2d: k must be randomly chosen. If k is
chosen randomly, then c = C(k,p) should also be random. Given a random c,
the problem of finding a k' such that C(k',p) = c should require a full

22 1

exhaustive search.

The additional conditions can be interpreted as meaning that encryption of
two plaintexts with two keys from two disjoint key spaces is effectively
equivalent to encryption with two unrelated ciphers: knowledge of how to
cryptanalyze messages enciphered with keys from one space will be of no help
in cryptanalyzing messages enciphered with keys from the other key space.
The main reason tha t F is parameterized is to take advantage of this aspect
of property 2. If i f j , then Fi and F. are separate one way functions:
breaking Fi and breaking F. are two independent problems. If F were not
parameterized, then the many applications of F by many different people to
different arguments would constitute a single interrelated problem. The
problem of reversing some application of F to one of many possible arguments
would be much easier to solve than the problem of reversing a particular
application of F to a particular argument. This entire issue can be avoided by
parameterization.

J

Both properties 1 and 2 will be satisfied if C is a "random cipher," a concept
described by Shannon [121. The strength of modern encryption functions is
based on their resemblance to random ciphers: to quote Feistel's [l l l
description of Lucifer, "AS the input moves through successive layers the
pattern of 1's generated is amplified and results in a n unpredictable
avalanche. In the end the final output will have, on the average, half 0's and
half 1's ,..."

Should ciphers tha t do not satisfy properties 1 and 2 be called "certified?"
This is largely a question of the appropriate definition of the term. It seems
prudent to demand that a cipher not be considered certified if i t fails to
satisfy either property 1 or 2: the author would certainly be reluctant to use
such a cipher for any purpose.

The reader should note that property 1 is much more robust than property 2:
designing systems which depend on property 2 requires special care.

We will define Fi in stages: first we define the one way function G<iJ , , which
satisfies properties 2, 3, 4, and 5 ; but whose input is restricted to 200 bits or
less. We define

G<i j , accepts up to a 200 bit input x, 50 bit parameters i and j, and produces
a 100 bit output y, as desired. Furthermore, given y the problem of finding
an x' such that G<ij,(x') = y is equivalent to finding a key x' such tha t y =
C (< x ' , i j > , Q.

222

If C satisfies properties 1 and 2 this is computationally infeasible.

We can now define Fi in terms of G,ij>. If the input x to Fi is 100 bits or
less, then we can "pad" x by adding 0's until it is exactly 100 bits, and define

Fi(x) = G,i,l,(<O,x>). (Wheree is 100 bits of 0).

If the input is more than 100 bits, we will break it into 100 bit pieces.
Assume that

Xn' x_ = <xl , X y ...
and that each xk is 100 bits long. Then Fi is defined in terms of repeated

applications of GCij.,. G<i,l, is first applied to x1 to obtain y1 =

G<i,i>(<!Lxl>). Then ~2 = G < ~ , ~ > (< Y ~ , x Z >) , ~g = G<i ,3>(<~29~3>) , ~4
= G,i , , , (<~3,~4>) , ... Yj = G<ij>(<Yj-l,xj>), Y, - - G<i,n>(<Yn-

x >I. Fi@ is defined to be y,; the final y in the series. 1' n

It is obvious tha t Fi can accept arbitrarily large values for x. It is less
obvious (though true) that it is computationally infeasible to find any vector x'
not equal to x_ such that Fi@ = Fi(x_'). We shall call finding such an x_' as

"breaking" Fi.

If we assume that C is a certified encryption function, i.e., that property 1 or
2 holds, we can prove inductively that breaking Fi is computationally
infeasible. If we utilize assumption 1 we can prove that the average effort
required to compute x_' will be at least 21ength(p)'2; while if we use assumpiion
2 we can prove tha t the average effort required to compute x_' will be at least
2length(p'-', although we require that x' be random.

As a basis, when n = 1 the property holds because, by definition, Ficx,' =
G<i,l,(<O,x,>) = C(<O,x,,i,l>,@) and the property holds for C by
assumption. To show that the property must hold for n + l if it holds for n,
we need only note that if FiCx,, = F i g) , then one of the following two

conditions must hold:

223

A.) xk = &for all k _< n

€3.) Xk * dgor some k _< n

If (B) holds, then by the induction hypothesis we have already spent the
required effort to compute xk z x’k, for some k <_ n.

If (A) holds and x_ f g7 then x ~ + ~ f x ’ ~ + ~ . The effort required to compute
x’,+~ not equal to x ~ + ~ ~ but with G<i,n+l,(<yn,x’n+l>) equal to

G‘..i,n+l,(<yn,xn+l>) must be 21en*(p)’2 (if we use property 11, or
2length(p)-’ (if we use property 2), by definition of G<i,n+l> and properties 1
and 2.

In those cases where the conditions of property 2 do not hold, property 1 will.

I t is important in practice to distinguish between those cases where property
2 can t e used, and those which can use only property 1. The use of property 2
allows the size of the block cipher to be reduced by a factor of two, while still
maintaining the same level of security. This will lead to a factor of two
reduction in most storage and transmission costs in the following algorithms.

To clarify further explanations we will omit the subscript from F in the rest
of the paper, but the reader should remember that parameterizing F is
essential to take advantage of property 2. If property 1 is used, i t is still
advisable to parameterize F.

3. The Lamport-Diffie One Time Signature

The Lamport-Diffie one time signature[l] is based on the concept of a one way
function[2,9]. If y = F(x) is the result of applying the one way function F to
input x, then the key observation is:

The person who computed y = F(x) is the only person who knows x. If y
is publicly revealed, only the originator of y can know X,
and can choose to reveal or conceal x at his whim.

224

This is best clarified by an example. Suppose a person A has some stock,
which he can sell a t any time. A might wish to sell the stock on short notice,
which means that A would like to tell his broker over the phone. The broker,
B, does not wish to sell with only a phone call as authorization. To solve this
problem, A computes y = F(x) and gives y to B. They agree that when A
wants to sell his stock he will reveal x to B. (This agreement could be
formalized as a written contract[4] which includes the value of y and a
description of F but not the value of x.) B will then be able to prove that A
wanted to sell his stock, because B will be able to exhibit x, and demonstrate
that F(x) = y.

If A later denies having sold the stock, B can show the contract and x to a
judge as proof that A, contrary to his statement, did sell the stock. Both F
and y are given in the original (written) contract, so the judge can compute
F(x) and verify that it equals y. The only person who could possibly know x
would be A, and the only way B could have learned x would be if A had
revealed x. Therefore, A must have revealed x: an action which by prior
agreement meant that A wanted to sell his stock.

This example illustrates a signature system which “signs” a single bit of
information. Either A sold the stock, or he did not. If A wanted to tell his
broker to sell 10 shares of stock, then A must be able to sign a several bit
message. In the general Lamport-Diffie scheme, if A wanted to sign a
message m whose size was s bits, then he would compute F(xl) = yl, F(xJ =
yz, F(x) = y ,... F(xJ = y,. A and B would agree on the vector Y = yl, y2 ...
y,. If t i e Jth t i t of m was a 1, A would reveal xj. If the jth bit of m was a 0, A
would not reveal x In essence, each bit of m would be individually signed.
Arbitrary messages can be signed, one bit at a time. j*

In practice, long messages (greater than 100 bits) can be be mapped into short
messages (100 bits) by a one way function and only the short message signed.
It is always possible to use property 2 (described in section 2). F can be
parameterized as Fi (also described in section 2), the message can be
encrypted with a newly generated random key by the signer before it is
signed, and the random key appended to the message. The signed message
will therefore be random (assuming that encryption with a random key will
effectively randomize the message, a fact that is generally conceded for
modern encryption functions 1111). These steps will satisfy the conditions for
property 2. We can therefore assume, without loss of generality, that all
messages are a fixed length, e.g., 100 bits.

The method as described thus far suffers from the defect that B can alter m
by changing bits that are 1’s into 0’s. B simply denies he ever received x., (in
spite of the fact he did). However, 0’s cannot be changed to 1’s. Lamport and
Diffie overcame this problem by signing a new message m’, which is exactly
twice as long as m and is computed by concatenating m with the bitwise
complement of m. That is, each bit m. in the original message is represented

J by two bits, mj and the complement of m. in the new message m’. Clearly,

J

J

225

one or the other bit must be a 0. To alter the message, B would have to turn
a 0 into a 1, something he cannot do.

I t should now be clear why this method is a "one time" signature: Each Y =
y,, yz, ... yz* can only be used to sign one message. If more than one
message is to be signed, then new values Y,, Y2, Y3, ... are needed, a new Yi
for each message.

One time signatures are practical between a single pair of users who'are
willing to exchange the large amount of data necessary but they are not
practical for most applications without further refinements. (Rabin [131 has
described a different one time signature method).

Between two people, A and his broker B for example, a signature system for n
possible messages might be designed as follows. A would compute

(where y i j = F(x. .), and the x i . are chosen randomly). However, prior to
using this methodtJA and B woufd have to agree that x = Y,, Y ... Yn was
to be used for signatures, and B would have to have a copy of 3 would
have to be authenticated in some fashion so it could be shown to a judge in
the event of a dispute, and proven to be the that both A and B agreed on.)
If each y i j is 100 bits long, if s = 100, and if n = 1000 (i.e., 1000 possible
messages can be signed, each 100 bits in length) then x will be n 2 * s * 100
= 1000 * 2 * 100 * 100 = 20,000,000 bits or 2.5 megabytes. While this
might not be overly burdensome when only two users, A and B, are involved
in the signature system, if B had to keep 2.5 megabytes of data for 1000 other
users, B would have to store 2.5 gigabytes of data. While possible, this hardly
seems economical. With further increases in the number of users, or in the
number of messages each user wants to be able to sign, the system becomes
completely unwieldy.

How t'o eliminate the huge storage requirements is a major subject of this
paper.

226

4. A n Improved One Time Signature

This section explains how to reduce the size of signed messages in the
Lamport-Diffie method by almost a factor of 2. It can be skipped without loss
of continuity.

As previously mentioned, the Lamport-Diffie method solves the problem that
1’s in the original message can be altered to 0’s by doubling the length of the
message, and signing each bit and its complement independently. In this
way, changing a 1 to a 0 in the new message, m’, would result in a n
incorrectly formatted message, which would be rejected. In essence, this
represents a solution to the problem:

Create a coding scheme in which accidental or intentional conversion
of 1’s to 0’s will produce an illegal codeword.

An alternative coding method which would accomplish the same result would
be to append a count of the 0 bits in m before signing. The new message,m’,
would be only logq s bits longer than the original s bit message, m. If any 1’s
in m’ were changed to O’s, it would produce an illegal codeword by either
increasing the number of 0’s in m, and thus make the count of 0’s too small,
or it would alter the count of 0’s. If the count of 0’s is in standard binary,
changing a bit in this count from 1 to 0 must reduce the count, and hence
result in an illegal codeword. Notice that while it is possible to reduce the
count by changing 1’s t o 0’s in the count field, and while it is possible to
increase the number of 0’s by changing 1’s to 0’s in the message, these two
“errors” cannot be made to compensate for each other.

A small example is in order. Assume that our messages are 8 bits long, and
that our count is log2 8 = 3 bits long. If our message m is

m = 11010110

Then m’ would be

m’ = 11010110,011

(Where a comma is used to clarify the division of m’ into m and its 0 count.)

If the codeword 11010110,011 were changed to 01010110,011 by changing the
first 1 to a 0, then the count 011 would have to be changed to 100 because we
now have 4 Us, not 3. But this requires changing a 0 to a 1, something we
cannot do. If the codeword were changed to 11010110,010 by altering the 0
count then the message would have to be changed so that it had only 2 0’s
instead of 3. Again, this change is illegal because it requires changing 0’s to
1’s.

This improved method is easy to implement and cuts the size of the signed

227

message almost in half.

5 . The Winternitz Improvement

Shortly before publication[e.g., in 19791, Robert Winternitz of the Stanford
Mathematics Department suggested a further substantial improvement which
reduces the size of the signed message by an additional factor of about 4 to 8.
Winternitz's method trades time for space: the reduced size is purchased with
an increased computational effort.

In the Lamport-Diffie method, given that y = F(x) and that y is public and x
is secret, a user signs a single bit of information by either making 11 public or
keeping i t secret.

In the Winternitz method we still use y and x, and make y public and keep x
secret, but we compute y from x by applying F repeatedly, for example, y =
F'?x). This allows us to sign 4 bits of information (instead of just 1) with the
single y value. To sign the 4 bit message 1001 (9 in decimal), the signer
makes F9(x) public. Anyone can check that F (F (x)) = y, thus confirming
that F9(x) was made public, but no one can generate that value.

Because F9(x) is public, F"(x) can be easily computed by anyone. Someone
could then (falsely) claim that the signed four bit message was 1010 (10 i n
decimal) rather than 1001, Overcoming this problem requires a slight
extension of the method described in section 4, and adds only log n additional
bits .

I 9

6 . Tree Authentication

A new protocol would eliminate the large storage requirements. If A
transmitted Y, to B just before signing a message, then B would not
previously have had to get and keep copies of the Y, from A. Unfortunately,
such a protocol would not work. Anyone could claim to be A, send a false Yi,
and trick B into thinking he had received a properly authorized signature
when he had received nothing of the kind. B must somehow be able to
confirm that he was sent the correct Y, and not a forgery.

The problem is to authenticate A's Yi. The simplest (but unsatisfactory)
method is to keep a copy of A's Yi. In this section, we describe a method
called "tree authentication" which can be used to authenticate any Yi of any
user quickly and easily, but which requires minimal storage.

Tree authentication can also be used to solve authentication problems which
do not involve digital signatures: that it is being used to generate tree
signatures in this paper should not prejudice the reader into thinking that
that is its only application.

228

Problem Definition: Given a vector of data items x = Y,, Y,, ... Y, design an
algorithm which can quickly authenticate a randomly chosen Yi but which
has modest memory requirements, i.e., does not have a table of Y,, Y,, ... Yn.

To authenticate the Yi we apply the "divide and conquer" technique. Define
the function H(ij,x) as follows:

H(ij,x) is a function of Yi, Y i + l , ... Yj. H(i&x) can be used to authenticate Yi
through Yj. H(l,n,x) can be used to authenticate Y through Y,. H(l,n,x) is
only 100 bits, so it can be conveniently stored. This method lets US
selectively authenticate any "leaf," Yi, that we wish. To see this, we use an
example where n = 8. The sequence of recursive calls required to compute
H(1,8,x) is illustrated in Figure 1. To authenticate Y,, we can proceed in the
following manner:

1.) H(1,8,Y) is already known and authenticated.

2.) H(1,8,Y) = F(< H(1,4,x), H(5,8,x) >I. Send H(1,4,Y) and H(5,8,%)
and let the receiver compute H(1,8,X) = F(< H(1,4,X),
H(5,8,Y) >) and confirm they are correct.

3.) The receiver has authenticated H(5,8,x). Send H(5,6,x) and H(7,8,B
and let the receiver compute H(5,8,x) = F(< H(5,6,11),
H(7,8,x) >) and confirm they are correct.

4.) The receiver has authenticated H(5,6,X). Send H(5,5,X) and H(6,6,X)
and let the receiver compute H(5,6,x) = F(< H(5,5,1),
H(6,6,1) >) and confirm they are correct.

5 .) The receiver has authenticated H(5,5,1). Send Y, and let the receiver
compute H(5,5,x) = F(Y, and confirm it is correct.

6 .) The receiver has authenticated Y,.

Using this method, only logl n transmissions are required, each of about 200
bits. Close examination of the algorithm will reveal that half the
transmissions are redundant. For example, H(5,6,x) can be computed from
H(5,5,X) and H(6,6,X), so there is really no need to send H(6,6,1). Similarly,
H(5,8,1) can be computed from H(5,6,y) and H(7,8,x), so H(6,8,1) need never

229

be transmitted, either. (The receiver must compute these quantities anyway
for proper authentication.) Therefore, to authenticate Y, only required that
we have previously authenticated H(l78,X), and that we transmit Y,,
H(6,6,x), H(7,8,Y), and H(l74,x). That is, we require 100 * logz n bits of
information to authenticate a n arbitrary Yi.

The method is called tree authentication because the computation of H(l,n,x)
forms a binary tree of recursive calls. Authenticating a particular leaf Yi in
the tree requires only those values of H() starting from the leaf and
progressing to the root, i.e., from H(i,i,x) to H(l,n,y). H(1,nJ) will be
referred to as the root of the authentication tree, or R. The information near
the path from R to H(i,i,x) required to authenticate Yi will be called the
authentication path for Yi.

The proof that the authentication path actually authenticates the chosen leaf
is similar to the proof in section 2 that F(x) correctly authenticates x, and will
not be repeated. It is important to decide whether property 1 or property 2
should be used: if property 1 is used the size of the authentication path must
be doubled to preserve the same level of security. This choice depends on
whether we trust the person who first computed the authentication tree. If
we do, then property 2 can be used. If we don't, then property 1 must be
used. This is because property 1 is independent of the method of
computation. Property 2 requires random selection, and can be subverted by
non-random choices.

The use of tree authentication to create tree signatures is now fairly clear. A
transmits Y, to B. A then transmits the authentication path for Y.. B knows
R, the root of the authentication tree, by prior arrangement. d can then
authenticate Y,, and can accept a signed message from A as genuine.

If the Jth user has a distinct authentication tree with root Rj, then tree
authentication can be used to authenticate R. just as easily as it can be used
to authenticate Y,. It is not necessary for each user to remember all the Rj in
order to authenticate them. A central clearinghouse could accept the R. from
all u users, and compute H(l,u&). This single 1-200 bit quantity could then
be distributed and would serve to authenticate all the R., which would in turn
be used to authenticate the Yi. In practice, A would remember R, and the
authentication path for R, and send them to B along with Y, and the
authentication path for Yi.

J

Because it is impossible to add new leaves (representing new users) to the
"user tree" once i t has been computed, it is necessary to compute and issue
new user trees periodically. I t is precisely this "inflexibility" which makes it
unnecessary to trust the central clearinghouse. If i t is impossible to add new
users, it is impossible to add imposters. On the other hand, any system which
allows new users to be added quickly, easily, and conveniently can be
subverted by quickly, easily, and conveniently adding an imposter.

230

A different method of authentication would be for the clearinghouse to
digitally sign "letters of reference" for new users of the system using a one
time signature. This has the virtue of convenience, but requires that the
clearinghouse be trusted not to (secretly) sign false letters of reference.
KohnfelderI31 has suggested this method for use with other public key
cryptosystems.

A full discussion of the protocols for using tree authentication, digital
signatures and one time signatures is well beyond the scope of this paper.

7 . The Path Regeneration Algorithm

A must know the authentication path for Yi before transmitting i t to B.
IJnfortunately this requires the computation of H(ij,x) for many different
values of i and j. In the example, it was necessary to compute H(6,6,1),
H(7,8,1), and H(1,4,x) and send them to B along with Y,. This is simple for
the small tree used in our example, but computing H(4194304,8388608,~) just
prior to sending i t would be an intolerable burden. One obvious solution
would be to precompute H(l,n,x) and to save all the intermediate
computations: i.e., precompute all authentication paths. This would certainly
allow the quick regeneration of the authentication path for Yi, but would
require a large memory.

A more satisfactory solution is to note that we wish to authenticate Y,, Y,,
Y,, Y,, ... in that order. Most of the computations used in reconstructing the
authentication path for Y, can be used in computing the authentication path
for Y i + l . Only the incremental computations need be performed, and these
can be made quite modest.

In addition, although the Xi (from which the Yi are generated) must appear
to be random, they can actually be generated (safely) in a pseudo-random
fashion from a small truly random seed. It is not necessary to keep the Xi in
memory, but only the small truly random seed used to generate them.

The result of these observations is an algorithm which can recompute each Yi
and i t s authentication path quickly and with modest memory requirements.
Before describing it we review the problem:

Problem Definition: Sequentially generate the authentication
paths for Y,, Y,, Y,, ... Yn with modest time and space
bounds.

The simplest way to understand how an algorithm can efficiently generate all
authentication paths is to generate all the authentication paths for a small
example.

23 1

An example of all authentication paths for n = 8 is:

TABLE 1

If we had to separately compute each entry in table 1, then it would be
impossible to efficiently generate the authentication paths. Fortunately,
there is a great deal of duplication. If we eliminate all duplicate entries, then
table 1 becomes table 2:

TABLE 2

Clearly we can generate all authentication paths by separately computing
each of the 2*n-1 entries in table 2, but is this "efficient?" Before we can
answer this question and determine the cost of computing these entries, we
must decide on the units to be used in measuring this "cost." Because all
computations must eventually be defined in terms of the underlying
encryption function C(key,plaintext), it seems appropriate to define
computational cost in terms of the number of applications of C. One
application of C counts as one "unit" of computation. We shall call this "unit"
the 'let," (pronounced eetee) which stands for "encryption time."

Computing F requires a number of ets proportional to the length of its input.
In particular, if the input is composed of k * 100 bits, then F requires k-1 ets.

232

First, we must determine the cost of computing the individual entries. The
algorithm for H(ij,Y) does a tree traversal of the subtree whose leaves are Yi,
Y' i+ l , Y i + 2 , ... Yj. At each non-leaf node in this traversal it does 1 et of
computation (one application of F to a 200-bit argument). There are j-i non-
leaf nodes, so the computation requires j-i ets, excluding the leaves. The
computations required to regenerate a leaf will be fixed and finite. Let r be
the (fixed) number of ets required to regenerate a leaf. There are (j-i+l)
leaves, so the overall cost of computing H(i,j,x) is (j-i) + 6-i + 1) * r ets. If r is
large, we can approximate this by (i-i+ 1) * r ets.

We can now approximate the cost of computing each entry in table 2. There
are n entries which require about r ets, n/2 entries which require about 2 * r
ets, n/4 entries which require about 4 * r ets, and n/8 entries which require
about 8 * r ets. This means that the total cost of computing all entries in a
single column is about 8 * r ets. There are 4 columns, so the total
computational effort is about 4 * 8 * r = 32 * r ets. In general, the
computational effort required to compute table 2 will be n * (1 + log, n) * r
ets. This is because computing all the entries in each column will require n *
r ets, and there are 1 + logz n columns.

This result implies that an algorithm which sequentially generated the
authentication paths would require about

log, n * r (1)

ets per path, where r is a constant representing the number of ets required to
regenerate a leaf. This is quite reasonable. (The peak computational load is
also reasonable, as will be seen in the next two paragraphs).

Although the time required to generate each authentication path is small, we
must also insure that the space required is small. We can do this by again
looking at table 2. As we sequentially generate the authentication paths, we
will sequentially go through the entries in a column. This implies tha t at
any point in time there are only two entries in a column of any interest to us:
the entry needed in the current authentication path, and the entry
immediately following it. We must know the entry in the current
authentication path, for without it, we could not generate that path. At some
point, we will need the next entry in the column to generate the next
authentication path. Because it might require a great deal of effort to
compute the next entry all a t once -producing a high peak load- we need to
compute it incrementally, and to begin computing it well in advance of the
time we will actually require it t o generate an authentication path.

As an example, H(5,8,Y) is required in the authentication paths for Y,, Y,,
Y,, and Y H(1,4,Y) is required in the paths for Y,, Y,, Y,, and Y,. The
values of A0 for the first authentication path must be precomputed. Once
this precomputation is complete, the succeeding values of HO required in
succeeding authentication paths must be incrementally computed. As we

233

generate the first 4 authentication paths, we must be continuously and
incrementally computing H(1,4,1) so that i t will be available when we reach
Y,. In addition, we must start computing H(1,2,y) when we generate the first
authentication path; we must s tar t computing H(7,8,x) when we reach Y,; we
must start computing H(5,6,x) when we reach Y,; and so on.

By incrementally computing the HO values required in the authentication
paths, we insure that the peak computational effort is low (O(log, n) per
authentication path) as well as the average computational effort.

If we assume a convenient block size (of 100 bits) and if we ignore constant
factors, then the memory required by this method can be computed. We can
first determine the memory required by the computations in each column, and
then sum over all log n columns. We must have one block to store the
current entry in the cofumn. We must also have enough memory to compute
the next entry in the column. The memory required while computing H(iJ,y)
is 1 -k log2 (j-i+l) blocks. This assumes a straightforward recursive
algorithm whose maximum stack depth will be 1 + log, (j-i+l). The memory
required to recompute a leaf (to recompute H(i,i,x)) is ignored because it is
small f a few blocks), constant, and the same memory can be shared by all the
columns. Representing the memory requirements of HO in a new table in the
same format as table 2 gives table 3:

leaf memory required to compute entries
in authentication path (in blocks)

4 3 2 1
1

2 1

y,
y 2
y,

1
3 2 1

1
2 1

TABLE 3

Table 3 shows the memory required to compute each entry in table 2. The
memory required for each column will be about the memory required during
the computation of the next entry. This means the total memory required
will be about: 3 + 2 + 1 = 9 blacks. (This assumes we do not recompute
H(1,8,y)).

There are logz n columns and each column requires, on an average, (log2 n)/2
blocks. The total memory required will be about:

234

(log, n),/2 blocks

This means tha t the memory required when n = 220 (1,048,576) is about
20*20/2 = 200 blocks. For 100 bit blocks, this means 20 kilobits, or 2.5
kilobytes. Other overhead might amount to 2 'or 3 kilobytes, giving an
algorithm which requires 5 or 6 kilobytes of memory, in total.

This algorithm can be described by the following program, written in a
Pascal-like language with two multiprocessing primitives added:

1.) While <condition> wait
2.) Fork <statement>

In addition, the function "MakeY(i)" will regenerate the value of Yi. Note
that n must be a power of 2.

Declare flag: array[O..log,(n)-l] of integer;

(* AP -- Authentication Path *)
AP: array[0..log2(n)-ll of block;

Procedure Gen(i);
Begin i + l Do For j:= 1 to n step 2

Begin
Emit(i,H(i+2ij+2i+1-1));
Emit(i,H(jj + 2'-1));

End;
End;

Procedure Emit(i,value);
Begin

While flag[il f 0 wait;
AP[i]: = value;
flag[iI: = 2';

End;

Procedure H(a,b);
Begin

(* Note that in a real implementation F must be
parameterized as described in section 2 *)

If a = b Return(F(MakeY(a)))
Else
Return(F(< H(a,(a+b-l)/2),H((a+b+1)/2,b) >) 1;

End;

(* The main program *I
Begin

235

For i := 0 to log,(n)-1 Do
Begin
flag[il:= 0;
Fork Gen(i);

End;
For j:= 1 to n Do
Begin
Print("Authenticati0n Path 'I, j, I' is:");
For k := 0 to log,(n)-l Do
Begin
While flag[kl = 0 wait;
Prin t(APlk1);
flagtkl: = flagtkl-1;

End;
End;

End;

The general structure of this program is simple: the main routine forks off
log, n processes to deal with the log, n columns. Then i t prints each
authentication path by sequentially printing an output from each process.
The major omission in this program is the rate at which each process does its
computations. I t should be clear, though, that each process has adequate
time to compute its next output. This follows from the observation tha t a
single call to "Emit" will generate enough output for 2' authentication paths,
while the time required to compute the next entry is approximately 2'.

There are three major ways of improving this algorithm. First, each process
is completely independent of the other processes. However, separate processes
often require the same intermediate values of HO, and could compute these
values once and share the result.

Second, values of HO are discarded after use, and must be recomputed later
when needed. While saving all values of H() takes too much memory, saving
some values can reduce the computation time and also reduce memory
requirements. The reduction in memory is because of the savings in memory
when the saved value is not recomputed. Recomputing a value requires
memory for the computation, while saving the value requires only a single
block.

Finally, the memory requirements can be reduced by carefully scheduling the
processes. While it is true that each process requires about log2 n blocks of
memory, this is a maximum requirement, not a typical requirement. By
speeding up the execution of a process when i t is using a lot of memory, and
then slowing it down when i t is using little memory, the average memory
requirement of a process (measured in block-seconds) can be greatly reduced.
By scheduling the processes so that the peak memory requirements of one
process coincide with the minimum memory requirernenta of other processes,

236

the total memory required can be reduced.

All three approaches deserve more careful study: the potential savings in
time and space might be large.

Before the time requirements of the algorithm can be fully analyzed, a
description of MakeY is needed: i.e., we must determine r in equation (1). If
we assume that the improved version of the Lamport-Difie algorithm is used,
then MakeY must generate pseudo-random Xi vectors, from which Yi vectors
can then be generated. If the messages are all 100 bits, then the Xi vectors
will have 100 + log2 100 = 107 elements. (Longer messages can be mapped
into a 100 bit message space using one way functions as described in section
2.)

The Xi vectors can be generated using a conventional cipher, C(key,plaintext).
A single 300 bit secret key is required as the "seed" of the pseudo-random
process which generates the Xi vectors. The output of C is always 100 bite,
and the input must be 100 bits or less. We can now define x . . as

1J

xii = C(seedkey,<ij>)

(Where "seedkey" is the 300 bit secret and truly random key used as the
"seed" of this somewhat unconventional pseudo-random number generator.)
The subscript i is in the range 1 to n, while the subscript j is in the range 1 to
107. There are n possible messages, each 100 bits in length. Each Xi is a
vector xi,l, xi,2, ...

Determining any x . . knowing some of the other x. .'s is equivalent to the
problem of cryptanalyzing C under a known plaintext attack. If C is a
certified encryption function, it will not be possible to determine any of the
x i . without already knowing the key. The secret vectors Xi are therefore
sale.

'J 'J

We kiiow that y i j = F(xij), and that H(i,i,l) = F(Y,) = F (< Y ~ , ~ , yi,2, ...
Y ~ , ~ , , ~ >) . The cost of computing F(Yi) is 106 ets, because Y, is 107 * 100 bite
long. The total effort to compute H(i,i,y) is the effort to generate the
elements of the Xi vector, plus the effort to compute F(X~,~) , F(xi,), ... Ftxi,J,
plus the effort to compute F(Y,). This is 107 ets to compute the]ti vector, 107
ets to compute the Yi vector, and 106 ets to compute F(Y,) = H(i,i,y). This is
a total of 320 ets to regenerate each leaf in the authentication tree.

Using equation (11, we know that the cost per authentication path is log, n *
320 ets. For n = 220, this is 6400 eta. To generate authentication pathe at
the rate of one per second implies 1 et is about 160 microseconds. While
easily done in hardware, this speed is difficult to attain in software on current
computers. Reducing the number of eta per authentication path ie a

237

worthwhile goal. This can effectively be done by reducing either the cost of
computing H(i,i,x), or by reducing the number of times that H(i,i,x) has to be
computed.

As mentioned earlier, keeping previously computed values of HO rather than
discarding them and sharing commonly used values of HO among the logp n
processes reduces the cost of computing each authentication path. In fact, a
reduction from over 6000 ets to about 1300 ets (for n = 220) can be attained
(due to the complexity of the improvement, however, it will not be described).
(To put this in perspective, MakeY requires 320 ets and must be executed at
least once per authentication path. Therefore, 320 eta is the absolute
minimum that can be attained without modifying MakeY.) This means the
path regeneration algorithm can run in reasonable time (a few seconds) even
when the underlying encryption function, C, is implemented in software.

8 . CONCLUSION

Digital signature systems not requiring public key cryptosystems are not only
possible, they can be easier to certify. Such a system was described which
had modest space and time requirements and a signature size of from 1 to 3
kilobytes. The method described can be implemented quickly, without the
long delays due to certification.

9. ACKNU WLEDGEMENTS

It is a great pleasure for the author to acknowledge the pleasant and
informative conversations he had with Dov Andelman, Whitfield Diffie, John
Gill, Martin Hellman, Raynold Kahn, Loren Kohnfelder, Leslie Lamport, and
Steve Pohlig.

10. BIBLIOGRAPHY

1. Diffie, W., and Hellman, M. New directions in cryptography. IEEE Trans.
on Inform. IT-22, 6(Nov. 19761, 644-654.

2. Evans A., Kantrowitz, W., and Weiss, E. A user authentication system
not requiring secrecy in the computer. Comm. ACM 17, 8(Aug. 19741, 437-
442.

3. Kohnfelder, L.M. Using certificates for key distribution in a public-key
cryptosystem. Private communication.

4. Lipton, S.M., and Matyas, S.M. Making the digital signature legal--and

238

safeguarded. Data Communications (Feb. 19781, 41-52.

5 . McEliece, R.J. A public-key cryptosystem based on algebraic coding
theory. DSN Progress Report, JPL, (Jan. and Feb. 1978), 42-44.

6. Merkle, R. Secure Communications over Insecure Channels. Comm. ACM
21, 4(Apr. 1978), 294-299.

7. Merkle, R., and Hellman, M.
trapdoor knapsacks. IEEE Trans. on Inform. IT-24, 5(Sept. 19781, 525-530.

Hiding information and signatures in

8. Rivest, R.L., Shamir, A., and Adleman, L. A method for obtaining digital
signatures and public-key cryptosystems. Comm. ACM 21, 2(Feb. 19781, 120-
126.

9. Wilkes, M.V., Time-sharing Computer Systems. Elsevier, New York,
1972.

10. Lamport, L., Constructing digital signatures from a one way function.
SRI Intl. CSL - 98

11. Feistel, H., Cryptography and computer security. Scientific American,
228(May 1973), 15-23.

12. Shannon, C.E., Communication theory of secrecy systems. Bell Sys. Tech.
Jour. 28(0ct. 1949) 656-715.

13. Rabin, M.O., Digitalized signatures. In Foundations of Secure
Computation, R. Lipton and R. DeMillo, Eds., Academic Press, New York,
1978, pp. 165-166.

ADDENDUM

This article was originally submitted to Ron Rivest, then editor of the
Communications of the ACM, in 1979. It was accepted subject to revisions,
and was revised and resubmitted in November of 1979. Unfortunately, Ron
Rivest passed over the editorship to someone else, the author became involved
in a startup, and the referees reportedly never responded to the revised draft.
The version printed here is the final revised version submitted to CACM in
1979. The only change (besides formatting) is the author's affiliation. Then,
he was a t BNR in Palo Alto, CA. Now, he is at Xerox PARC in Palo Alto,
CA.

	A CERTIFIED DIGITAL SIGNATURE
	Introduction
	One Way Functions
	The Lamport-Diffie One Time Signature
	An Improved One Time Signature
	The Winternitz Improvement
	Tree Authentication
	The Path Regeneration Algorithm
	CONCLUSION
	ACKNU WLEDGEMENTS
	BIBLIOGRAPHY
	ADDENDUM

