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Abstract 
A practical digital signature system based on a conventional encryption 
function which is as secure as the conventional encryption function is 
described. Since certified conventional systems are available it can be 
implemented quickly, without the several years delay required for 
certification of an untested system. 
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1. Introduction 

Digital signatures promise to revolutionize business by phone (or other 
telecommunication devices1111 but currently known digital signature methods 
[5,6,7,8,10,131 either have not been certified, or have other drawbacks. A 
signature system whose security rested on the security of a conventional 
cryptographic function would be “pre-certified” to the extent that the 
underlying encryption function had been certified. The delays and cost of a 
new certification effort would be avoided. Lamport and Diffie[l][lO] suggested 
such a system, but it has severe performance drawbacks. Lipton and 
Matyas[ll nonetheless suggested its use as the only near term solution to a 
pressing problem. 

This paper describes a digital signature system which is “pre-certified,” 
generates signatures of about 1 to 3 kilobytes (depending on the exact 
security requirements), requires a few thousand applications of the 
underlying encryption function per signature, and only a few kilobytes of 
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memory. If the underlying encryption function takes 10 microseconds to 
encrypt a block, generating a signature might take 20 milliseconds. 

The new signature method is called a “tree signature.” The following major 
points are covered: 

1.) A discussion of one way functions. 
2.) A description of the Lamport-Diffie one time signature. 
3.) An improvement to  the Lamport-Diffie one time signature. 
4.) The Winternitz one time signature. 
5.) A description of tree signatures. 

2. One Way Functions 

One way functions[2,91 are basic to this paper. Intuitively, a one way 
function F is one which is easy to compute but difficult to  invert. If y = F(x), 
then given x and F, i t  is easy to compute y, but given y and F it is effectively 
impossible to compute x. 

Readers interested only in getting the gist of this paper are advised to skip 
this section and continue with section 3. 

We will parameterize F, i.e., create a family of one way functions F,, F , F, ... 
Fi ..., to improve security. I t  is easier to analyze a single function wiich is 
used repeatedly than it is to analyze all the different Fi. Often i t  is desirable 
for Fi to also compress a large input (e.g. 10,000 bits) into a smaller output 
(e.g. 100 bits). This will be referred to as a one way hash function and it is 
required that, for all i: 

1.) Fi can be applied to any argument of any size. 
2.) Fi always produces a fixed size output, which, for the sake of 

3.) Given x i t  is easy to compute Fi(x). 
4.) It is computationally infeasible to find x’ f x such that Fi(x) = Fi(x’). 
5.) Given Fi(x) i t  is computationally infeasible to determine x. 

concreteness, we can assume is 100 bits. 

An important point of notation: when we wish to concatenate two arguments 
x1 and x2, we will write <x1,x2>. Thus, if x1 and x2 are both 100 bits long, 
<x1,x2> will be their 200 bit concatenation. 

The major use of one way functions is for authentication. If a value y can be 
authenticated, we can authenticate x by computing: 

No other input x’ can be found (although they probably exist) which will 
generate y. A 100 bit y can authenticate an arbitrarily large x. This 
property is crucial for the convenient authentication of large amounts of 
information. (Although a 100 bit y is plausible, selection of the size in a real 

Fib) = y 
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system involves tradeoffs between the reduced cost and improved efficiency of 
a smaller size, and the improved security of a larger size.) 

Functions such as F, can be defined in terms of conventional cryptographic 
functions[61. We therefore assume we have a conventional encryption 
function C(key,plaintext) which has a 300 bit key size and encrypts 100 bit 
blocks of plaintext into 100 bit blocks of ciphertext. 

In order to prove that F, is a good one way function, we must make some 
assumptions about the conventional cryptographic function on which it is 
based (Rabin has also considered this problem[l31). In particular, we require 
that i t  possess certain properties. 

A "certified" encryption function C(k,p) = c, in which length(p) = length(c) <_ 
length(k1, must have the following properties: 

1.) The average computational effort required to find any four values k, 
k', p, and c such that C(k,p) = C - =  C(k',p) and k-;t  k' is greater 
than 21'3n@h(p)12. 

2.) The average computational effort required to find four values k, k', p, 
and c such that C(k,p) = c = C(k',p) and k f k' is 21en@h(p)-1 if the 
following conditions hold: 

a.) The plaintext, p, is known and fixed. 
b.) The key space is divided into mutually disjoint subsets S,, S2, ... 
c.) k is a n  element of the set {k k,, ... 1 
d.) Each ki is randomly chosen &om S.. 
e.) Each Si must have a t  least 21enpth(h) elements. 
f.) both k and k' must be elements of the same subset Si. 

For the rest of this paper, these will be referred to as "property 1" and 
"property 2." 

Property 1 is rather clear: finding two keys k and k' for the aame plaintext- 
ciphertext pair requires a certain minimum computational effort under all 
circumstances. 

Property 2 requires more explanation. It states that finding two keys k 
and k' for the same plaintext ciphertext pair requires a full exhaustive 
search IF certain conditions are satisfied. (Notice that property 1, which 
applies unconditionally, states that the required effort to find k and k' is 
proportional to the square root of a simple exhaustive search.) 

The most important condition is 2d: k must be randomly chosen. If k is 
chosen randomly, then c = C(k,p) should also be random. Given a random c, 
the problem of finding a k' such that C(k',p) = c should require a full 
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exhaustive search. 

The additional conditions can be interpreted as meaning that encryption of 
two plaintexts with two keys from two disjoint key spaces is effectively 
equivalent to encryption with two unrelated ciphers: knowledge of how to 
cryptanalyze messages enciphered with keys from one space will be of no help 
in cryptanalyzing messages enciphered with keys from the other key space. 
The main reason tha t  F is parameterized is to take advantage of this aspect 
of property 2.  If i f j ,  then Fi and F. are separate one way functions: 
breaking Fi and breaking F. are two independent problems. If F were not 
parameterized, then the many applications of F by many different people to 
different arguments would constitute a single interrelated problem. The 
problem of reversing some application of F to one of many possible arguments 
would be much easier to solve than the problem of reversing a particular 
application of F to a particular argument. This entire issue can be avoided by 
parameterization. 

J 

Both properties 1 and 2 will be satisfied if C is a "random cipher," a concept 
described by Shannon [121. The strength of modern encryption functions is 
based on their resemblance to random ciphers: to quote Feistel's [ l l l  
description of Lucifer, "AS the input moves through successive layers the 
pattern of 1's generated is amplified and results in a n  unpredictable 
avalanche. In the end the final output will have, on the average, half 0's and 
half 1's ,..." 

Should ciphers tha t  do not satisfy properties 1 and 2 be called "certified?" 
This is largely a question of the appropriate definition of the term. It seems 
prudent to demand that  a cipher not be considered certified if i t  fails to  
satisfy either property 1 or 2: the author would certainly be reluctant to use 
such a cipher for any purpose. 

The reader should note that property 1 is much more robust than property 2: 
designing systems which depend on property 2 requires special care. 

We will define Fi in stages: first we define the one way function G<iJ , ,  which 
satisfies properties 2, 3, 4, and 5 ;  but whose input is restricted to 200 bits or 
less. We define 

G<i j ,  accepts up to a 200 bit input x, 50 bit parameters i and j, and produces 
a 100 bit output y, as  desired. Furthermore, given y the problem of finding 
an x' such that G<ij,(x') = y is equivalent to finding a key x' such tha t  y = 
C ( < x ' , i j > ,  Q. 
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If C satisfies properties 1 and 2 this is computationally infeasible. 

We can now define Fi in terms of G,ij>. If the input x to Fi is 100 bits or 
less, then we can "pad" x by adding 0's until it is exactly 100 bits, and define 

Fi(x) = G,i,l,(<O,x>). (Wheree is  100 bits of 0). 

If the input is more than 100 bits, we will break it into 100 bit pieces. 
Assume that 

Xn' x_ = <xl ,  X y  ... 
and that  each xk is 100 bits long. Then Fi is defined in terms of repeated 

applications of GCij.,. G<i,l, is first applied to x1 to obtain y1 = 

G<i,i>(<!Lxl>). Then ~2 = G < ~ , ~ > ( < Y ~ , x Z > ) ,  ~g = G<i ,3>(<~29~3>) ,  ~4 
= G,i , , , (<~3,~4>) ,  ... Yj = G<ij>(<Yj-l,xj>), Y, - - G<i,n>(<Yn- 

x >I. Fi@ is defined to be y,; the final y in the series. 1' n 

It is obvious tha t  Fi can accept arbitrarily large values for x. It is less 
obvious (though true) that it is computationally infeasible to find any vector x' 
not equal to x_ such that Fi@ = Fi(x_'). We shall call finding such an x_' as 

"breaking" Fi. 

If we assume that C is a certified encryption function, i.e., that property 1 or 
2 holds, we can prove inductively that breaking Fi is computationally 
infeasible. If we utilize assumption 1 we can prove that the average effort 
required to compute x_' will be at least 21ength(p)'2; while if we use assumpiion 
2 we can prove tha t  the  average effort required to compute x_' will be at least 
2length(p'-', although we require that x' be random. 

As a basis, when n = 1 the property holds because, by definition, Ficx,' = 
G<i,l,(<O,x,>) = C( <O,x,,i,l>,@ ) and the property holds for C by 
assumption. To show that  the property must hold for n + l  if it holds for n, 
we need only note that if FiCx,, = F i g ) ,  then one of the following two 

conditions must hold: 
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A.) xk = &for all k _< n 

€3.) Xk * dgor some k _< n 

If (B) holds, then by the induction hypothesis we have already spent the 
required effort to compute xk z x’k, for some k <_ n. 

If (A) holds and x_ f g7 then x ~ + ~  f x ’ ~ + ~ .  The effort required to compute 
x’,+~ not equal to x ~ + ~ ~  but with G<i,n+l,(<yn,x’n+l>) equal to 

G‘..i,n+l,(<yn,xn+l>) must be 21en*(p)’2 (if we use property 11, or 
2length(p)-’ (if we use property 2), by definition of G<i,n+l> and properties 1 
and 2. 

In those cases where the conditions of property 2 do not hold, property 1 will. 

I t  is important in practice to distinguish between those cases where property 
2 can t e  used, and those which can use only property 1. The use of property 2 
allows the size of the block cipher to be reduced by a factor of two, while still 
maintaining the same level of security. This will lead to a factor of two 
reduction in most storage and transmission costs in the following algorithms. 

To clarify further explanations we will omit the subscript from F in the rest 
of the paper, but the reader should remember that parameterizing F is 
essential to take advantage of property 2. If property 1 is used, i t  is still 
advisable to parameterize F. 

3. The Lamport-Diffie One Time Signature 

The Lamport-Diffie one time signature[l] is based on the concept of a one way 
function[2,9]. If y = F(x) is the result of applying the one way function F to 
input x, then the key observation is: 

The person who computed y = F(x) is the only person who knows x. If y 
is publicly revealed, only the originator of y can know X, 
and can choose to reveal or conceal x at his whim. 
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This is best clarified by an  example. Suppose a person A has some stock, 
which he can sell a t  any time. A might wish to sell the stock on short notice, 
which means that A would like to tell his broker over the phone. The broker, 
B, does not wish to sell with only a phone call as authorization. To solve this 
problem, A computes y = F(x) and gives y to B. They agree that when A 
wants to sell his stock he will reveal x to B. (This agreement could be 
formalized as a written contract[4] which includes the value of y and a 
description of F but not the value of x.) B will then be able to prove that  A 
wanted to sell his stock, because B will be able to exhibit x, and demonstrate 
that F(x) = y. 

If A later denies having sold the stock, B can show the contract and x to a 
judge as proof that A, contrary to his statement, did sell the stock. Both F 
and y are given in the original (written) contract, so the judge can compute 
F(x) and verify that it equals y. The only person who could possibly know x 
would be A, and the only way B could have learned x would be if A had 
revealed x. Therefore, A must have revealed x: an action which by prior 
agreement meant that A wanted to sell his stock. 

This example illustrates a signature system which “signs” a single bit of 
information. Either A sold the stock, or he did not. If A wanted to tell his 
broker to sell 10 shares of stock, then A must be able to sign a several bit 
message. In the general Lamport-Diffie scheme, if A wanted to  sign a 
message m whose size was s bits, then he would compute F(xl) = yl, F(xJ = 
yz, F(x ) = y ,... F(xJ = y,. A and B would agree on the vector Y = yl, y2 ... 
y,. If t i e  Jth t i t  of m was a 1, A would reveal xj. If the jth bit of m was a 0, A 
would not reveal x In essence, each bit of m would be individually signed. 
Arbitrary messages can be signed, one bit at  a time. j* 

In practice, long messages (greater than 100 bits) can be be mapped into short 
messages (100 bits) by a one way function and only the short message signed. 
It is always possible to use property 2 (described in section 2). F can be 
parameterized as Fi (also described in section 2), the message can be 
encrypted with a newly generated random key by the signer before it is 
signed, and the random key appended to the message. The signed message 
will therefore be random (assuming that encryption with a random key will 
effectively randomize the message, a fact that is generally conceded for 
modern encryption functions 1111). These steps will satisfy the conditions for 
property 2. We can therefore assume, without loss of generality, that  all 
messages are a fixed length, e.g., 100 bits. 

The method as described thus far suffers from the defect that B can alter m 
by changing bits that  are 1’s into 0’s. B simply denies he ever received x., (in 
spite of the fact he did). However, 0’s cannot be changed to 1’s. Lamport and 
Diffie overcame this problem by signing a new message m’, which is exactly 
twice as long as m and is computed by concatenating m with the bitwise 
complement of m. That is, each bit m. in the original message is represented 

J by two bits, mj and the complement of m. in the new message m’. Clearly, 

J 

J 
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one or the other bit must be a 0. To alter the message, B would have to turn 
a 0 into a 1, something he cannot do. 

I t  should now be clear why this method is a "one time" signature: Each Y = 
y,, yz, ... yz* can only be used to sign one message. If more than one 
message is to be signed, then new values Y,, Y2, Y3, ... are needed, a new Yi 
for each message. 

One time signatures are practical between a single pair of users who'are 
willing to exchange the large amount of data necessary but they are not 
practical for most applications without further refinements. (Rabin [131 has 
described a different one time signature method). 

Between two people, A and his broker B for example, a signature system for n 
possible messages might be designed as follows. A would compute 

(where y i j  = F(x. .), and the x i .  are chosen randomly). However, prior to  
using this methodtJA and B woufd have to agree that x = Y,, Y ... Yn was 
to be used for signatures, and B would have to have a copy of 3 would 
have to be authenticated in some fashion so it  could be shown to a judge in 
the event of a dispute, and proven to be the that both A and B agreed on.) 
If each y i j  is 100 bits long, if s = 100, and if n = 1000 (i.e., 1000 possible 
messages can be signed, each 100 bits in length) then x will be n 2 * s * 100 
= 1000 * 2 * 100 * 100 = 20,000,000 bits or 2.5 megabytes. While this 
might not be overly burdensome when only two users, A and B, are involved 
in the signature system, if B had to keep 2.5 megabytes of data for 1000 other 
users, B would have to store 2.5 gigabytes of data. While possible, this hardly 
seems economical. With further increases in the number of users, or in  the 
number of messages each user wants to be able to sign, the system becomes 
completely unwieldy. 

How t'o eliminate the huge storage requirements is a major subject of this 
paper. 
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4. A n  Improved One Time Signature 

This section explains how to reduce the size of signed messages in the 
Lamport-Diffie method by almost a factor of 2. It can be skipped without loss 
of continuity. 

As previously mentioned, the Lamport-Diffie method solves the problem that 
1’s in the original message can be altered to 0’s by doubling the length of the 
message, and signing each bit and its complement independently. In this 
way, changing a 1 to a 0 in the new message, m’, would result in a n  
incorrectly formatted message, which would be rejected. In essence, this  
represents a solution to the problem: 

Create a coding scheme in which accidental or intentional conversion 
of 1’s to 0’s will produce an illegal codeword. 

An alternative coding method which would accomplish the same result would 
be to append a count of the 0 bits in m before signing. The new message,m’, 
would be only logq s bits longer than the original s bit message, m. If any 1’s 
in m’ were changed to O’s, it would produce an illegal codeword by either 
increasing the number of 0’s in m, and thus make the count of 0’s too small, 
or it would alter the count of 0’s. If the count of 0’s is in standard binary, 
changing a bit in this count from 1 to 0 must reduce the count, and hence 
result in an illegal codeword. Notice that while it is possible to reduce the 
count by changing 1’s t o  0’s in the count field, and while it is possible to 
increase the number of 0’s by changing 1’s to 0’s in the message, these two 
“errors” cannot be made to compensate for each other. 

A small example is in order. Assume that our  messages are 8 bits long, and 
that our count is log2 8 = 3 bits long. If our message m is 

m = 11010110 

Then m’ would be 

m’ = 11010110,011 

(Where a comma is used to  clarify the division of m’ into m and its 0 count.) 

If the codeword 11010110,011 were changed to 01010110,011 by changing the 
first 1 to a 0, then the count 011 would have to be changed to 100 because we 
now have 4 Us, not 3. But this requires changing a 0 to a 1, something we 
cannot do. If the codeword were changed to 11010110,010 by altering the 0 
count then the message would have to be changed so that it had only 2 0’s 
instead of 3. Again, this change is illegal because it requires changing 0’s to 
1’s. 

This improved method is easy to implement and cuts the size of the signed 
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message almost in half. 

5 .  The Winternitz Improvement 

Shortly before publication[e.g., in 19791, Robert Winternitz of the Stanford 
Mathematics Department suggested a further substantial improvement which 
reduces the size of the signed message by an additional factor of about 4 to 8. 
Winternitz's method trades time for space: the reduced size is purchased with 
an increased computational effort. 

In the Lamport-Diffie method, given that y = F(x) and that y is public and x 
is secret, a user signs a single bit of information by either making 11 public or 
keeping i t  secret. 

In the Winternitz method we still use y and x, and make y public and keep x 
secret, but we compute y from x by applying F repeatedly, for example, y = 
F'?x). This allows us to sign 4 bits of information (instead of just 1) with the 
single y value. To sign the 4 bit message 1001 (9 in decimal), the signer 
makes F9(x) public. Anyone can check that F (F (x)) = y, thus confirming 
that F9(x) was made public, but no one can generate that value. 

Because F9(x) is public, F"(x) can be easily computed by anyone. Someone 
could then (falsely) claim that the signed four bit message was 1010 (10 i n  
decimal) rather than 1001, Overcoming this problem requires a slight 
extension of the method described in section 4, and adds only log n additional 
bits . 

I 9  

6 .  Tree Authentication 

A new protocol would eliminate the large storage requirements. If A 
transmitted Y, to B just before signing a message, then B would not 
previously have had to get and keep copies of the Y, from A. Unfortunately, 
such a protocol would not work. Anyone could claim to be A, send a false Yi, 
and trick B into thinking he had received a properly authorized signature 
when he had received nothing of the kind. B must somehow be able to 
confirm that he was sent the correct Y, and not a forgery. 

The problem is to authenticate A's Yi. The simplest (but unsatisfactory) 
method is to keep a copy of A's Yi. In this section, we describe a method 
called "tree authentication" which can be used to authenticate any Yi of any 
user quickly and easily, but which requires minimal storage. 

Tree authentication can also be used to solve authentication problems which 
do not involve digital signatures: that it is being used to  generate tree 
signatures in this paper should not prejudice the reader into thinking that  
that is its only application. 
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Problem Definition: Given a vector of data items x = Y,, Y,, ... Y, design an 
algorithm which can quickly authenticate a randomly chosen Yi but which 
has modest memory requirements, i.e., does not have a table of Y,, Y,, ... Yn. 

To authenticate the Yi we apply the "divide and conquer" technique. Define 
the function H(ij,x) as  follows: 

H(ij,x) is a function of Yi, Y i + l ,  ... Yj. H(i&x) can be used to authenticate Yi 
through Yj. H(l,n,x) can be used to authenticate Y through Y,. H(l,n,x) is 
only 100 bits, so it can be conveniently stored. This method lets US 
selectively authenticate any "leaf," Yi, that we wish. To see this, we use an 
example where n = 8. The sequence of recursive calls required to compute 
H(1,8,x) is illustrated in Figure 1. To authenticate Y,, we can proceed in the 
following manner: 

1.) H(1,8,Y) is already known and authenticated. 

2.) H(1,8,Y) = F(< H(1,4,x), H(5,8,x) >I. Send H(1,4,Y) and H(5,8,%) 
and let the receiver compute H(1,8,X) = F(< H(1,4,X), 
H(5,8,Y) >) and confirm they are correct. 

3.) The receiver has authenticated H(5,8,x). Send H(5,6,x) and H(7,8,B 
and let the receiver compute H(5,8,x) = F(< H(5,6,11), 
H(7,8,x) >) and confirm they are correct. 

4.) The receiver has authenticated H(5,6,X). Send H(5,5,X) and H(6,6,X) 
and let the receiver compute H(5,6,x) = F(< H(5,5,1), 
H(6,6,1) >) and confirm they are correct. 

5 . )  The receiver has authenticated H(5,5,1). Send Y, and let the receiver 
compute H(5,5,x) = F( Y, and confirm it is correct. 

6 . )  The receiver has authenticated Y,. 

Using this method, only logl n transmissions are required, each of about 200 
bits. Close examination of the algorithm will reveal that half the 
transmissions are  redundant. For example, H(5,6,x) can be computed from 
H(5,5,X) and H(6,6,X), so there is really no need to send H(6,6,1). Similarly, 
H(5,8,1) can be computed from H(5,6,y) and H(7,8,x), so H(6,8,1) need never 
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be transmitted, either. (The receiver must compute these quantities anyway 
for proper authentication.) Therefore, to authenticate Y, only required that 
we have previously authenticated H(l78,X), and that we transmit Y,, 
H(6,6,x), H(7,8,Y), and H(l74,x). That is, we require 100 * logz n bits of 
information to authenticate a n  arbitrary Yi. 

The method is called tree authentication because the computation of H(l,n,x) 
forms a binary tree of recursive calls. Authenticating a particular leaf Yi in 
the tree requires only those values of H() starting from the leaf and 
progressing to the root, i.e., from H(i,i,x) to H(l,n,y). H(1,nJ) will be 
referred to as  the root of the authentication tree, or R. The information near  
the path from R to H(i,i,x) required to authenticate Yi will be called the 
authentication path for Yi. 

The proof that the authentication path actually authenticates the chosen leaf 
is similar to the proof in section 2 that  F(x) correctly authenticates x, and will 
not be repeated. It is important to decide whether property 1 or property 2 
should be used: if property 1 is used the size of the authentication path must  
be doubled to preserve the same level of security. This choice depends on 
whether we trust the person who first computed the authentication tree. If 
we do, then property 2 can be used. If we don't, then property 1 must be 
used. This is because property 1 is independent of the method of 
computation. Property 2 requires random selection, and can be subverted by 
non-random choices. 

The use of tree authentication to create tree signatures is now fairly clear. A 
transmits Y, to B. A then transmits the authentication path for Y.. B knows 
R, the root of the authentication tree, by prior arrangement. d can then 
authenticate Y,, and can accept a signed message from A as genuine. 

If the Jth user has a distinct authentication tree with root Rj, then tree 
authentication can be used to authenticate R. just as easily as it can be used 
to authenticate Y,. It is not necessary for each user to remember all the Rj in 
order to authenticate them. A central clearinghouse could accept the R. from 
all u users, and compute H(l,u&). This single 1-200 bit quantity could then 
be distributed and would serve to authenticate all the R., which would in turn 
be used to authenticate the Yi. In practice, A would remember R, and the 
authentication path for R, and send them to B along with Y, and the 
authentication path for Yi. 

J 

Because it is impossible to add new leaves (representing new users) to  the 
"user tree" once i t  has been computed, it is necessary to compute and issue 
new user trees periodically. I t  is precisely this "inflexibility" which makes it 
unnecessary to trust  the central clearinghouse. If i t  is impossible to add new 
users, it is impossible to add imposters. On the other hand, any system which 
allows new users to be added quickly, easily, and conveniently can be 
subverted by quickly, easily, and conveniently adding an imposter. 



230 

A different method of authentication would be for the clearinghouse to 
digitally sign "letters of reference" for new users of the system using a one 
time signature. This has the virtue of convenience, but requires that the 
clearinghouse be trusted not to (secretly) sign false letters of reference. 
KohnfelderI31 has suggested this method for use with other public key 
cryptosystems. 

A full discussion of the protocols for using tree authentication, digital 
signatures and one time signatures is well beyond the scope of this paper. 

7 .  The Path Regeneration Algorithm 

A must know the authentication path for Yi before transmitting i t  to B. 
IJnfortunately this requires the computation of H(ij,x) for many different 
values of i and j. In the example, it  was necessary to compute H(6,6,1), 
H(7,8,1), and H(1,4,x) and send them to B along with Y,. This is simple for 
the small tree used in our example, but computing H(4194304,8388608,~) just 
prior to  sending i t  would be an intolerable burden. One obvious solution 
would be to precompute H(l,n,x) and to save all the intermediate 
computations: i.e., precompute all authentication paths. This would certainly 
allow the quick regeneration of the authentication path for Yi, but would 
require a large memory. 

A more satisfactory solution is to note that we wish to authenticate Y,, Y,, 
Y,, Y,, ... in that order. Most of the computations used in reconstructing the 
authentication path for Y, can be used in computing the authentication path 
for Y i + l .  Only the incremental computations need be performed, and these 
can be made quite modest. 

In addition, although the Xi (from which the Yi are generated) must appear 
to be random, they can actually be generated (safely) in a pseudo-random 
fashion from a small truly random seed. It is not necessary to keep the Xi in 
memory, but only the small truly random seed used to generate them. 

The result of these observations is an algorithm which can recompute each Yi 
and i t s  authentication path quickly and with modest memory requirements. 
Before describing it we review the problem: 

Problem Definition: Sequentially generate the authentication 
paths for Y,, Y,, Y,, ... Yn with modest time and space 
bounds. 

The simplest way to understand how an algorithm can efficiently generate all 
authentication paths is to generate all the authentication paths for a small 
example. 
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An example of all authentication paths for n = 8 is: 

TABLE 1 

If we had to separately compute each entry in table 1, then it would be 
impossible to efficiently generate the authentication paths. Fortunately, 
there is a great deal of duplication. If we eliminate all duplicate entries, then 
table 1 becomes table 2: 

TABLE 2 

Clearly we can generate all authentication paths by separately computing 
each of the 2*n-1 entries in table 2, but is this "efficient?" Before we can 
answer this question and determine the cost of computing these entries, we 
must decide on the units to be used in measuring this "cost." Because all 
computations must eventually be defined in terms of the underlying 
encryption function C(key,plaintext), it  seems appropriate to define 
computational cost in terms of the number of applications of C. One 
application of C counts as one "unit" of computation. We shall call this "unit" 
the 'let," (pronounced eetee) which stands for "encryption time." 

Computing F requires a number of ets proportional to the length of its input. 
In particular, if the input is composed of k * 100 bits, then F requires k-1 ets. 
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First, we must determine the cost of computing the individual entries. The 
algorithm for H(ij,Y) does a tree traversal of the subtree whose leaves are Yi, 
Y' i+ l ,  Y i + 2 ,  ... Yj. At each non-leaf node in this traversal it  does 1 et of 
computation (one application of F to a 200-bit argument). There are j-i non- 
leaf nodes, so the computation requires j-i ets, excluding the leaves. The 
computations required to  regenerate a leaf will be fixed and finite. Let r be 
the (fixed) number of ets required to regenerate a leaf. There are (j-i+l) 
leaves, so the overall cost of computing H(i,j,x) is (j-i) + 6-i + 1) * r ets. If r is 
large, we can approximate this by (i-i+ 1) * r ets. 

We can now approximate the cost of computing each entry in table 2. There 
are n entries which require about r ets, n/2 entries which require about 2 * r 
ets, n/4 entries which require about 4 * r ets, and n/8 entries which require 
about 8 * r ets. This means that the total cost of computing all entries in a 
single column is about 8 * r ets. There are 4 columns, so the total 
computational effort is about 4 * 8 * r = 32 * r ets. In general, the 
computational effort required to  compute table 2 will be n * (1 + log, n) * r 
ets. This is because computing all the entries in each column will require n * 
r ets, and there are 1 + logz n columns. 

This result implies that an  algorithm which sequentially generated the 
authentication paths would require about 

log, n * r (1) 

ets per path, where r is a constant representing the number of ets required to 
regenerate a leaf. This is quite reasonable. (The peak computational load is 
also reasonable, as will be seen in the next two paragraphs). 

Although the time required to generate each authentication path is small, we 
must also insure that the space required is small. We can do this by again 
looking at table 2. As we sequentially generate the authentication paths, we 
will sequentially go through the entries in a column. This implies tha t  at 
any point in time there are only two entries in a column of any interest to us: 
the entry needed in the current authentication path, and the entry 
immediately following it. We must know the entry in the current 
authentication path, for without it, we could not generate that path. At some 
point, we will need the next entry in the column to generate the next 
authentication path. Because it might require a great deal of effort to 
compute the next entry all a t  once -producing a high peak load- we need to 
compute it incrementally, and to begin computing it well in advance of the 
time we will actually require it t o  generate an authentication path. 

As an example, H(5,8,Y) is required in the authentication paths for Y,, Y,, 
Y,, and Y H(1,4,Y) is required in the paths for Y,, Y,, Y,, and Y,. The 
values of A0 for the first authentication path must be precomputed. Once 
this precomputation is complete, the succeeding values of HO required in 
succeeding authentication paths must be incrementally computed. As we 
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generate the first 4 authentication paths, we must be continuously and 
incrementally computing H(1,4,1) so that i t  will be available when we reach 
Y,. In addition, we must start computing H(1,2,y) when we generate the first 
authentication path; we must s tar t  computing H(7,8,x) when we reach Y,; we 
must start  computing H(5,6,x) when we reach Y,; and so on. 

By incrementally computing the HO values required in the authentication 
paths, we insure that the peak computational effort is low ( O(log, n) per 
authentication path) as well as the average computational effort. 

If we assume a convenient block size (of 100 bits) and if we ignore constant 
factors, then the memory required by this method can be computed. We can 
first determine the memory required by the computations in each column, and 
then sum over all log n columns. We must have one block to store the 
current entry in the cofumn. We must also have enough memory to compute 
the next entry in the column. The memory required while computing H(iJ,y) 
is 1 -k log2 (j-i+l) blocks. This assumes a straightforward recursive 
algorithm whose maximum stack depth will be 1 + log, (j-i+l). The memory 
required to recompute a leaf (to recompute H(i,i,x)) is ignored because it is 
small f a  few blocks), constant, and the same memory can be shared by all the  
columns. Representing the memory requirements of HO in a new table in the  
same format as table 2 gives table 3: 

leaf memory required to compute entries 
in  authentication path (in blocks) 

4 3 2 1 
1 

2 1 

y, 
y 2  
y, 

1 
3 2 1 

1 
2 1 

TABLE 3 

Table 3 shows the memory required to compute each entry in table 2. The 
memory required for each column will be about the memory required during 
the computation of the next entry. This means the total memory required 
will be about: 3 + 2 + 1 = 9 blacks. (This assumes we do not recompute 
H( 1,8,y)). 

There are logz n columns and each column requires, on an  average, (log2 n)/2 
blocks. The total memory required will be about: 
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(log, n),/2 blocks 

This means tha t  the memory required when n = 220 (1,048,576) is about 
20*20/2 = 200 blocks. For 100 bit blocks, this means 20 kilobits, or 2.5 
kilobytes. Other overhead might amount to 2 'or 3 kilobytes, giving an 
algorithm which requires 5 or 6 kilobytes of memory, in total. 

This algorithm can be described by the following program, written in a 
Pascal-like language with two multiprocessing primitives added: 

1.) While <condition> wait 
2.) Fork <statement> 

In addition, the function "MakeY(i)" will regenerate the value of Yi. Note 
that n must be a power of 2. 

Declare flag: array[O..log,(n)-l] of integer; 

(* AP -- Authentication Path *) 
AP: array[0..log2(n)-ll of block; 

Procedure Gen(i); 
Begin i + l  Do For j:= 1 to n step 2 

Begin 
Emit(i,H(i+2ij+2i+1-1)); 
Emit(i,H(jj + 2'-1)); 

End; 
End; 

Procedure Emit(i,value); 
Begin 

While flag[il f 0 wait; 
AP[i]: = value; 
flag[iI: = 2'; 

End; 

Procedure H(a,b); 
Begin 

(* Note that in a real implementation F must be 
parameterized as described in section 2 *) 

If a = b Return(F(MakeY(a))) 
Else 
Return( F(<  H(a,(a+b-l)/2),H((a+b+1)/2,b) >) 1; 

End; 

(* The main program *I 
Begin 
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For i := 0 to log,(n)-1 Do 
Begin 
flag[il:= 0; 
Fork Gen(i); 

End; 
For j:= 1 to n Do 
Begin 
Print("Authenticati0n Path 'I, j, I' is:"); 
For k := 0 to log,(n)-l Do 
Begin 
While flag[kl = 0 wait; 
Prin t(APlk1); 
flagtkl: = flagtkl-1; 

End; 
End; 

End; 

The general structure of this program is simple: the main routine forks off 
log, n processes to deal with the log, n columns. Then i t  prints each 
authentication path by sequentially printing an output from each process. 
The major omission in this program is the rate at which each process does its 
computations. I t  should be clear, though, that each process has adequate 
time to compute its next output. This follows from the observation tha t  a 
single call to "Emit" will generate enough output for 2' authentication paths, 
while the time required to compute the next entry is approximately 2'. 

There are three major ways of improving this algorithm. First, each process 
is completely independent of the other processes. However, separate processes 
often require the same intermediate values of HO, and could compute these 
values once and share the result. 

Second, values of HO are discarded after use, and must be recomputed later 
when needed. While saving all values of H() takes too much memory, saving 
some values can reduce the computation time and also reduce memory 
requirements. The reduction in memory is because of the savings in memory 
when the saved value is not recomputed. Recomputing a value requires 
memory for the computation, while saving the value requires only a single 
block. 

Finally, the memory requirements can be reduced by carefully scheduling the 
processes. While it is true that each process requires about log2 n blocks of 
memory, this is a maximum requirement, not a typical requirement. By 
speeding up the execution of a process when i t  is using a lot of memory, and 
then slowing it down when i t  is using little memory, the average memory 
requirement of a process (measured in block-seconds) can be greatly reduced. 
By scheduling the processes so that the peak memory requirements of one 
process coincide with the minimum memory requirernenta of other processes, 
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the total memory required can be reduced. 

All three approaches deserve more careful study: the potential savings in 
time and space might be large. 

Before the time requirements of the algorithm can be fully analyzed, a 
description of MakeY is needed: i.e., we must determine r in equation (1). If 
we assume that the improved version of the Lamport-Difie algorithm is used, 
then MakeY must generate pseudo-random Xi vectors, from which Yi vectors 
can then be generated. If the messages are all 100 bits, then the Xi vectors 
will have 100 + log2 100 = 107 elements. (Longer messages can be mapped 
into a 100 bit message space using one way functions as described in section 
2.) 

The Xi vectors can be generated using a conventional cipher, C(key,plaintext). 
A single 300 bit secret key is required as the "seed" of the pseudo-random 
process which generates the Xi vectors. The output of C is always 100 bite, 
and the input must be 100 bits or less. We can now define x . .  as 

1J 

xii = C(seedkey,<ij>) 

(Where "seedkey" is the 300 bit secret and truly random key used as the 
"seed" of this somewhat unconventional pseudo-random number generator.) 
The subscript i is in  the range 1 to n, while the subscript j is in the range 1 to 
107. There are n possible messages, each 100 bits in length. Each Xi is a 
vector xi,l, xi,2, ... 

Determining any x . .  knowing some of the other x. .'s is equivalent to the 
problem of cryptanalyzing C under a known plaintext attack. If C is a 
certified encryption function, it will not be possible to determine any of the 
x i .  without already knowing the key. The secret vectors Xi are therefore 
sale. 

'J 'J 

We kiiow that y i j  = F(xij), and that H(i,i,l) = F(Y,) = F ( < Y ~ , ~ ,  yi,2, ... 
Y ~ , ~ , , ~ > ) .  The cost of computing F(Yi) is 106 ets, because Y, is 107 * 100 bite 
long. The total effort to compute H(i,i,y) is the effort to generate the 
elements of the Xi vector, plus the effort to compute F(X~,~) ,  F(xi,), ... Ftxi,J, 
plus the effort to compute F(Y,). This is 107 ets to compute the ]ti vector, 107 
ets to compute the Yi vector, and 106 ets to compute F(Y,) = H(i,i,y). This is 
a total of 320 ets to regenerate each leaf in the authentication tree. 

Using equation (11, we know that the cost per authentication path is log, n * 
320 ets. For n = 220, this is 6400 eta. To generate authentication pathe at 
the rate of one per second implies 1 et is about 160 microseconds. While 
easily done in hardware, this speed is difficult to attain in software on current 
computers. Reducing the number of eta per authentication path ie a 
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worthwhile goal. This can effectively be done by reducing either the cost of 
computing H(i,i,x), or  by reducing the number of times that H(i,i,x) has to be 
computed. 

As mentioned earlier, keeping previously computed values of HO rather than 
discarding them and sharing commonly used values of HO among the logp n 
processes reduces the cost of computing each authentication path. In fact, a 
reduction from over 6000 ets to about 1300 ets (for n = 220) can be attained 
(due to the complexity of the improvement, however, it  will not be described). 
(To put this in perspective, MakeY requires 320 ets and must be executed at 
least once per authentication path. Therefore, 320 eta is the absolute 
minimum that can be attained without modifying MakeY.) This means the 
path regeneration algorithm can run in reasonable time (a few seconds) even 
when the underlying encryption function, C, is implemented in software. 

8 .  CONCLUSION 

Digital signature systems not requiring public key cryptosystems are not only 
possible, they can be easier to certify. Such a system was described which 
had modest space and time requirements and a signature size of from 1 to 3 
kilobytes. The method described can be implemented quickly, without the 
long delays due to certification. 

9. ACKNU WLEDGEMENTS 

It is a great pleasure for the author to acknowledge the pleasant and 
informative conversations he had with Dov Andelman, Whitfield Diffie, John 
Gill, Martin Hellman, Raynold Kahn, Loren Kohnfelder, Leslie Lamport, and 
Steve Pohlig. 

10. BIBLIOGRAPHY 

1. Diffie, W., and Hellman, M. New directions in cryptography. IEEE Trans. 
on Inform. IT-22, 6(Nov. 19761, 644-654. 

2. Evans A., Kantrowitz, W., and Weiss, E. A user authentication system 
not requiring secrecy in the computer. Comm. ACM 17, 8(Aug. 19741, 437- 
442. 

3. Kohnfelder, L.M. Using certificates for key distribution in a public-key 
cryptosystem. Private communication. 

4. Lipton, S.M., and Matyas, S.M. Making the digital signature legal--and 



238 

safeguarded. Data Communications (Feb. 19781, 41-52. 

5 .  McEliece, R.J. A public-key cryptosystem based on algebraic coding 
theory. DSN Progress Report, JPL, (Jan. and Feb. 1978), 42-44. 

6. Merkle, R. Secure Communications over Insecure Channels. Comm. ACM 
21, 4(Apr. 1978), 294-299. 

7. Merkle, R., and Hellman, M. 
trapdoor knapsacks. IEEE Trans. on Inform. IT-24, 5(Sept. 19781, 525-530. 

Hiding information and signatures in 

8. Rivest, R.L., Shamir, A., and Adleman, L. A method for obtaining digital 
signatures and public-key cryptosystems. Comm. ACM 21, 2(Feb. 19781, 120- 
126. 

9. Wilkes, M.V., Time-sharing Computer Systems. Elsevier, New York, 
1972. 

10. Lamport, L., Constructing digital signatures from a one way function. 
SRI Intl. CSL - 98 

11. Feistel, H., Cryptography and computer security. Scientific American, 
228(May 1973), 15-23. 

12. Shannon, C.E., Communication theory of secrecy systems. Bell Sys. Tech. 
Jour. 28(0ct. 1949) 656-715. 

13. Rabin, M.O., Digitalized signatures. In Foundations of Secure 
Computation, R. Lipton and R. DeMillo, Eds., Academic Press, New York, 
1978, pp. 165-166. 

ADDENDUM 

This article was originally submitted to Ron Rivest, then editor of the 
Communications of the ACM, in 1979. It was accepted subject to revisions, 
and was revised and resubmitted in November of 1979. Unfortunately, Ron 
Rivest passed over the editorship to someone else, the author became involved 
in a startup, and the referees reportedly never responded to the revised draft. 
The version printed here is the final revised version submitted to CACM in 
1979. The only change (besides formatting) is the author's affiliation. Then, 
he was a t  BNR in Palo Alto, CA. Now, he is at Xerox PARC in Palo Alto, 
CA. 
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