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ABSTRACT
Ordered sets (and maps when data is associated with each key)
are one of the most important and useful data types. The set-set
functions union, intersection and difference are particularly useful
in certain applications. Brown and Tarjan first described an algo-
rithm for these functions, based on 2-3 trees, that meet the optimal
Θ
(
m log

(
n
m

+ 1
))

time bounds in the comparison model (n and
m ≤ n are the input sizes). Later Adams showed very elegant
algorithms for the functions, and others, based on weight-balanced
trees. They only require a single function that is specific to the
balancing scheme—a function that joins two balanced trees—and
hence can be applied to other balancing schemes. Furthermore the
algorithms are naturally parallel. However, in the twenty-four years
since, no one has shown that the algorithms, sequential or parallel
are asymptotically work optimal.

In this paper we show that Adams’ algorithms are both work
efficient and highly parallel (polylog span) across four different
balancing schemes—AVL trees, red-black trees, weight balanced
trees and treaps. To do this we use careful, but simple, algorithms
for JOIN that maintain certain invariants, and our proof is (mostly)
generic across the schemes.

To understand how the algorithms perform in practice we have
also implemented them (all code except JOIN is generic across the
balancing schemes). Interestingly the implementations on all four
balancing schemes and three set functions perform similarly in time
and speedup (more than 45x on 64 cores). We also compare the
performance of our implementation to other existing libraries and
algorithms.

1. INTRODUCTION
Ordered sets and ordered maps (sets with data associated with

each key) are two of the most important data types used in modern
programming. Most programming languages either have them built
in as basic types (e.g. python) or supply them as standard libraries
(C++, C# Java, Scala, Haskell, ML). These implementations are
based on some form of balanced tree (or tree-like) data structure
and, at minimum, support lookup, insertion, and deletion in log-
arithmic time. Most also support set-set functions such as union,
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intersection, and difference. These functions are particularly use-
ful when using parallel machines since they can support parallel
bulk updates. In this paper we are interested in simple and efficient
parallel algorithms for such set-set functions.

The lower bound for comparison-based algorithms for union,
intersection and difference for inputs of size n and m ≤ n, and re-
turning an ordered structure1, is log2

(
m+n
n

)
= Θ

(
m log

(
n
m

+ 1
))

.
Brown and Tarjan first matched these bounds, asymptotically, us-
ing a sequential algorithm based on red-black trees [12]. Although
designed for merging, the algorithm can be adapted for union, inter-
section and difference with the same bounds. However, the Brown
and Tarjan algorithm is complicated, and completely sequential.

Adams later described very elegant algorithms for union, inter-
section, and difference, as well as other functions based on a single
function, JOIN [1, 2] (see Figure 1). JOIN(L, k,R) takes a key k
and two ordered sets L and R such that L < k < R and returns the
union of the keys [30, 28]. It can be used to implement JOIN2(L,R),
which does not take the key in the middle, and SPLIT(T, k), which
splits a tree at a key k returning the two pieces and a flag indicating
if k is in T (See Section 4). With these three functions, union, in-
tersection, and difference (as well as insertion, deletion and other
functions) are almost trivial. Because of this, at least three libraries
use Adams’ algorithms for their implementation of ordered sets and
tables (Haskell [21] and MIT/GNU Scheme, and SML).

Adam’s original algorithms implemented JOIN using weight-
balanced trees2. JOIN can also be implemented using other balance
criteria. Sleator and Tarjan describe an algorithm for JOIN based
on splay trees which runs in amortized logarithmic time [28]. Tar-
jan describes a version for red-black tree that runs in worst case
logarithmic time [30].

Surprisingly, however, there have been almost no results on bound-
ing the work (time) of Adams’ algorithms, in general nor on spe-
cific tree types. Adams informally argues that his algorithms take
O(n+m) work for weight-balanced tree, but that is a very loose
bound. Blelloch and Reid-Miller later show that similar algorithms
for treaps [7], are optimal for work (i.e. Θ

(
m log

(
n
m

+ 1
))

), and
are also parallel. Their algorithms, however, are specific for treaps.
The problem with bounding the work of Adams’ algorithms, is that
just bounding the time of SPLIT, JOIN and JOIN2 with logarithmic
costs is not sufficient.3 One needs additional properties of the trees.

1By “ordered structure” we mean any data structure that can output
elements in sorted order without any further comparisons—e.g., a
sorted array, or a binary search tree.
2Adams’ version had some bugs in maintaining the balance, but
these were later fixed [16, 29].
3Bounding the cost of JOIN, SPLIT, and JOIN2 by the logarithm
of the smaller tree is probably sufficient, but implementing a data
structure with such bounds is very much more complicated.
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split(T, k) =
if T = Leaf then (Leaf,false,Leaf)
else (L,m,R) = expose(T );

if k = m then (L,true,R)
else if k < m then

(LL, b, LR) = split(L, k);
(LL, b,join(LR,m,R))

else (RL, b, RR) = split(R, k);
(join(L,m,RL), b, RR)

splitLast(T ) =
(L, k,R) = expose(T );
if R = Leaf then (L, k)
else (T ′, k′) = splitLast(R);

(join(L, k, T ′), k′)

join2(TL,TR) =
if TL = Leaf then TR
else (T ′L, k) = splitLast(TL);

join(T ′L, k, TR)

insert(T, k) =
(TL,m, TR) = split(T, k);
join(TL, k, TR)

delete(T, k) =
(TL,m, TR) = split(T, k);
join2(TL, TR)

union(T1,T2) =
if T1 = Leaf then T2

else if T2 = Leaf then T1

else (L2,k2,R2) = expose(T2);
(L1,b,R1) = split(T1,k2);
TL = union(L1,L2) ‖ TR = union(R1,R2);
join(TL,k2,TR)

intersect(T1,T2) =
if T1 = Leaf then Leaf
else if T2 = Leaf then Leaf
else (L2,k2,R2) = expose(T2);

(L1,b,R1) = split(T1,k2);
TL = intersect(L1,L2) ‖ TR = intersect(R1,R2);
if b = true then join(TL,k2,TR)

else join2(TL,TR)

difference(T1,T2) =
if T1 = Leaf then Leaf
else if T2 = Leaf then T1

else (L2,k2,R2) = expose(T2);
(L1,b,R1) = split(T1,k2);
TL = difference(L1,L2) ‖ TR = difference(R1,R2);
join2(TL,TR)

Figure 1: Implementing UNION, INTERSECT, DIFFERENCE, INSERT, DELETE, SPLIT, and JOIN2 with just JOIN. EXPOSE returns the
left tree, key, and right tree of a node. The || notation indicates the recursive calls can run in parallel. These are slight variants of the
algorithms described by Adams [1], although he did not consider parallelism.

The contribution of this paper is to give the first work-optimal
bounds for Adams’ algorithms. We do this not only for the weight-
balanced trees, but for three other balancing schemes: AVL trees,
red-black trees and treaps. We analyze exactly the algorithms in
Figure 1. We show that with appropriate (and simple) implementa-
tions of JOIN for each balancing scheme, we achieve asymptotically
optimal bounds on work. These bounds hold when either input tree
is larger (this was surprising to us). Furthermore the algorithms have
O(logn logm) span (parallel time), and hence are highly parallel.
To prove the bounds on work we show that our implementations of
JOIN satisfy certain conditions based on a rank we define for each
tree type. In particular the cost of JOIN must be proportional to
the difference in ranks of two trees, and the rank of the result of a
join must be at most one more than the maximum rank of the two
arguments.

In addition to the theoretical analysis of the algorithms, we im-
plemented parallel versions of all of the algorithms on all four tree
types and describe experiments. Our implementation is generic in
the sense that we use common code for the algorithms in Figure 1,
and only wrote specialized code for each tree type for the JOIN func-
tion. Our implementations of JOIN are as described in this paper.
We compare performance across a variety of parameters. We com-
pare across the tree types, and interestingly all four balance criteria
have very similar performance. We measure the speedup on up to
64 cores and achieve close to a 46-fold speedup. We compare to
other implementations, including the set implementation in the C++
Standard Template library (STL) for sequential performance, par-
allel weight-balanced B-trees (WBB-trees) [14] and the multi-core
standard template library (MCSTL) [15] for parallel performance,
and to previously reported results on concurrent balanced trees [11].

The conclusion from the experiments is that although not always
as fast as (WBB-trees) [14] on uniform distributions, the generic
code is quite competitive, and on keys with a skewed overlap (t-
wo Gaussians with different means), our implementation is much
better than all the other baselines. Our times are very much faster
than the concurrent balanced trees, but this is perhaps not fair since
concurrent trees are not asymptotically efficient requiring at least
Ω(m logn) work instead of Θ

(
m log

(
n
m

+ 1
))

.

Related Work.
Parallel set operations on two ordered sets have been well-studied.

Paul, Vishkin, and Wagener studied bulk insertion and deletion on
2-3 trees in the PRAM model [26]. Park and Park showed similar
results for red-black trees [25]. These algorithms are not based
on JOIN and are not work efficient, requiring O(m logn) work.
Katajainen [18] claimed an algorithm withO

(
m log( n

m
+ 1)

)
work

and O(logn) span using 2-3 trees, but it appears to contain some
bugs in the analysis [7]. Blelloch and Reid-Miller described a similar
algorithm as Adams’ (as well as ours) on treaps with optimal work
(in expectation) and O(logn) span (with high probability) on a
EREW PRAM with scan operations. This implies O(logn logm)
span on a plain EREW PRAM, andO(logn log∗m) span on a plain
CRCW PRAM. The pipelining that is used is quite complicated.
Akhremtsev and Sanders [4] recently describe an algorithm for array-
tree UNION based on (a, b)-trees with optimal work and O(logn)
span on a CRCW PRAM. Our focus in this paper is in showing that
very simple algorithms are work efficient and have polylogarithmic
span, and less with optimizing the span.

Many researchers have considered concurrent implementations
of balanced search trees (e.g., [19, 20, 11, 23]). None of these are
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work efficient for UNION since it is necessary to insert one tree into
the other requiring at least Ω(m logn) work.

2. PRELIMINARIES
A binary tree is either a Leaf, or a node consisting of a left

binary tree TL, a value (or key) v, and a right binary tree TR, and
denoted Node(TL, v, TR). The size of a binary tree, or |T |, is 0 for
a Leaf and |TL| + |TR| + 1 for a Node(TL, v, TR). The weight
of a binary tree, or w(T ), is one more than its size (i.e., the number
of leaves in the tree). The height of a binary tree, or h(T ), is 0
for a Leaf, and max(h(TL), h(TR)) + 1 for a Node(TL, v, TR).
Parent, child, ancestor and descendant are defined as usual (ancestor
and descendant are inclusive of the node itself). The left spine of
a binary tree is the path of nodes from the root to a leaf always
following the left tree, and the right spine the path to a leaf following
the right tree. The in-order values of a binary tree is the sequence
of values returned by an in-order traversal of the tree.

A balancing scheme for binary trees is an invariant (or set of
invariants) that is true for every node of a tree, and is for the purpose
of keeping the tree nearly balanced. In this paper we consider four
balancing schemes that ensure the height of every tree of size n is
bounded by O(logn). For each balancing scheme we define the
rank of a tree, or r(T ).

AVL trees [3] have the invariant that for every Node(TL, v, TR),
the height of TL and TR differ by at most one. This property implies
that any AVL tree of size n has height at most logφ(n+ 1), where

φ = 1+
√
5

2
is the golden ratio. For AVL trees r(T ) = h(T )− 1.

Red-black (RB) trees [5] associate a color with every node and
maintain two invariants: (the red rule) no red node has a red child,
and (the black rule) the number of black nodes on every path from
the root down to a leaf is equal. Unlike some other presentations, we
do not require that the root of a tree is black. Our proof of the work
bounds requires allowing a red root. We define the black height
of a node T , denoted ĥ(T ) to be the number of black nodes on a
downward path from the node to a leaf (inclusive of the node). Any
RB tree of size n has height at most 2 log2(n + 1). In RB trees
r(T ) = 2(ĥ(T )− 1) if T is black and r(T ) = 2ĥ(T )− 1 if T is
red.

Weight-balanced (WB) trees with parameterα (also called BB[α]
trees) [24] maintain for every T = Node(TL, v, TR) the invariant
α ≤ w(TL)

w(T )
≤ 1 − α. We say two weight-balanced trees T1 and

T2 have like weights if Node(T1, v, T2) is weight balanced. Any
α weight-balanced tree of size n has height at most log 1

1−α
n. For

2
11
< α ≤ 1 − 1√

2
insertion and deletion can be implemented on

weight balanced trees using just single and double rotations [24,
8]. We require the same condition for our implementation of JOIN,
and in particular use α = 0.29 in experiments. For WB trees
r(T ) = dlog2(w(T ))e − 1.

Treaps [27] associate a uniformly random priority with every
node and maintain the invariant that the priority at each node is
no greater than the priority of its two children. Any treap of size
n has height O(logn) with high probability (w.h.p)4. For treaps
r(T ) = dlog2(w(T ))e − 1.

For all the four balancing schemes r(T ) = Θ(log(|T |+1)). The
notation we use for binary trees is summarized in Table 1.

A Binary Search Tree (BST) is a binary tree in which each value
is a key taken from a total order, and for which the in-order values
are sorted. A balanced BST is a BST maintained with a balancing
scheme, and is an efficient way to represent ordered sets.
4Here w.h.p. means that height O(c logn) with probability at least
1− 1/nc (c is a constant).

Notation Description
|T | The size of tree T
h(T ) The height of tree T
ĥ(T ) The black height of an RB tree T
r(T ) The rank of tree T
w(T ) The weight of tree T (i.e, |T |+ 1)
p(T ) The parent of node T
k(T ) The value (or key) of node T
L(T ) The left child of node T
R(T ) The right child of node T

expose(T ) (L(T ), k(T ), R(T ))

Table 1: Summary of notation.

Our algorithms are based on nested parallelism with nested fork-
join constructs and no other synchronization or communication
among parallel tasks.5 All algorithms are deterministic. We use
work W and span (or depth) S to analyze asymptotic costs, where
the work is the total number of operations and span is the criti-
cal path. We use the simple composition rules W (e1 || e2) =
W (e1) + W (e2) + 1 and S(e1 || e2) = max(S(e1), S(e2)) + 1.
For sequential computation both work and span compose with addi-
tion. Any computation with W work and S span will run in time
T < W

P
+ S assuming a PRAM (random access shared memory)

with P processors and a greedy scheduler [10, 9].

3. THE JOIN FUNCTION
Here we describe algorithms for JOIN for the four balancing

schemes we defined in Section 2. The function JOIN(TL, k, TR)
takes two binary trees TL and TR, and a value k, and returns a new
binary tree for which the in-order values are a concatenation of the
in-order values of TL, then k, and then the in-order values of TR.

As mentioned in the introduction and shown in Section 4, JOIN
fully captures what is required to rebalance a tree and can be used
as the only function that knows about and maintains the balance
invariants. For AVL, RB and WB trees we show that JOIN takes
work that is proportional to the difference in rank of the two trees.
For treaps the work depends on the priority of k. All versions of
JOIN are sequential so the span is equal to the work. Due to space
limitations, we describe the algorithms, state the theorems for all
balancing schemes, but only show a proof outline for AVL trees.

1 joinRight(TL, k, TR) =
2 (l, k′, c) = expose(TL);
3 if h(c) ≤ h(TR) + 1 then
4 T ′ = Node(c, k, TR);
5 if h(T ′) ≤ h(l) + 1 then Node(l, k′, T ′)
6 else rotateLeft(Node(l, k′, rotateRight(T ′)))
7 else
8 T ′ = joinRight(c, k, TR);
9 T ′′ = Node(l, k′, T ′);

10 if h(T ′) ≤ h(l) + 1 then T ′′

11 else rotateLeft(T ′′)

12 join(TL, k, TR) =
13 if h(TL) > h(TR) + 1 then joinRight(TL, k, TR)
14 else if h(TR) > h(TL) + 1 then joinLeft(TL, k, TR)
15 else Node(TL, k, TR)

Figure 2: AVL JOIN algorithm.

5This does not preclude using our algorithms in a concurrent setting.
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1 joinRightRB(TL, k, TR) =
2 if (r(TL) = br(TR)/2c × 2) then
3 Node(TL, 〈k,red〉, TR);
4 else
5 (L′, 〈k′, c′〉, R′)=expose(TL);
6 T ′ = Node(L′, 〈k′, c′〉,joinRightRB(R′, k, TR));
7 if (c′=black) and (c(R(T ′)) = c(R(R(T ′)))=red) then
8 c(R(R(T ′)))=black;
9 T ′′=rotateLeft(T ′)

10 else T ′′

11 joinRB(TL, k, TR) =
12 if br(TL)/2c > br(TR)/2c then
13 T ′ =joinRightRB(TL, k, TR);
14 if (c(T ′)=red) and (c(R(T ′))=red) then
15 Node(L(T ′), 〈k(T ′),black〉, R(T ′))
16 else T ′

17 else if br(TR)/2c > br(TL)/2c then
18 T ′ =joinLeftRB(TL, k, TR);
19 if (c(T ′)=red) and (c(L(T ′))=red) then
20 Node(L(T ′), 〈k(T ′),black〉, R(T ′))
21 else T ′

22 else if (c(TL)=black) and (c(TR)=black) then
23 Node(TL, 〈k,red〉, TR)
24 else Node(TL, 〈k,black〉, TR)

Figure 3: RB JOIN algorithm.

1 joinRightWB(TL, k, TR) =
2 (l, k′, c)=expose(TL);
3 if (balance(|TL|, |TR|) then Node(TL, k, TR));
4 else
5 T ′ = joinRightWB(c, k, TR);
6 (l1, k1, r1) = expose(T ′);
7 if like(|l|, |T ′|) then Node(l, k′, T ′)
8 else if (like(|l|, |l1|)) and (like(|l|+ |l1|, r1)) then
9 rotateLeft(Node(l, k′, T ′))

10 else rotateLeft(Node(l, k′,rotateRight(T ′)))

11 joinWB(TL, k, TR) =
12 if heavy(TL, TR) then joinRightWB(TL, k, TR)
13 else if heavy(TR, TL) then joinLeftWB(TL, k, TR)
14 else Node(TL, k, TR)

Figure 4: WB JOIN algorithm.

1 joinTreap(TL, k, TR) =
2 if prior(k, k1) and prior(k, k2) then Node(TL, k, TR)
3 else (l1, k1, r1)=expose(TL);
4 (l2, k2, r2)=expose(TR);
5 if prior(k1, k2) then
6 Node(l1, k1,joinTreap(r1, k, TR))
7 else Node(joinTreap(TL, k, l2),k2, r2)

Figure 5: Treap JOIN algorithm.

AVL trees. Pseudocode for AVL JOIN is given in Figure 2 and
illustrated in Figure 6. Every node stores its own height so that
h(·) takes constant time. If the two trees TL and TR differ by
height at most one, JOIN can simply create a new Node(TL, k, TR).
However if they differ by more than one then rebalancing is required.
Suppose that h(TL) > h(TR)+1 (the other case is symmetric). The
idea is to follow the right spine of TL until a node c for which h(c) ≤
h(TR) + 1 is found (line 3). At this point a new Node(c, k, TR)

is created to replace c (line 4). Since either h(c) = h(TR) or
h(c) = h(TR) + 1, the new node satisfies the AVL invariant, and
its height is one greater than c. The increase in height can increase
the height of its ancestors, possibly invalidating the AVL invariant
of those nodes. This can be fixed either with a double rotation if
invalid at the parent (line 6) or a single left rotation if invalid higher
in the tree (line 11), in both cases restoring the height for any further
ancestor nodes. The algorithm will therefore require at most two
rotations.

LEMMA 1. For two AVL trees TL and TR, the AVL JOIN al-
gorithm works correctly, runs with O(|h(TL) − h(TR)|) work,
and returns a tree satisfying the AVL invariant with height at most
1 + max(h(TL), h(TR)).

Proof outline. Since the algorithm only visits nodes on the path
from the root to c, and only requires at most two rotations, it does
work proportional to the path length. The path length is no more
than the difference in height of the two trees since the height of
each consecutive node along the right spine of TL differs by at least
one. Along with the case when h(TR) > h(TL) + 1, which is
symmetric, this gives the stated work bounds. The resulting tree
satisfies the AVL invariants since rotations are used to restore the
invariant (details left out). The height of any node can increase by
at most one, so the height of the whole tree can increase by at most
one.
Red-black Trees. Tarjan describes how to implement the JOIN
function for red-black trees [30]. Here we describe a variant
that does not assume the roots are black (this is to bound the in-
crease in rank by UNION). The pseudocode is given in Figure
3. We store at every node its black height ĥ(·). The first case
is when ĥ(TR) = ĥ(TL). Then if both k(TR) and k(TL) are
black, we create red Node(TL, k, TR), otherwise we create black
Node(TL, k, TR). The second case is when ĥ(TR) < ĥ(TL) = ĥ
(the third case is symmetric). Similarly to AVL trees, JOIN fol-
lows the right spine of TL until it finds a black node c for which
ĥ(c) = ĥ(TR). It then creates a new red Node(c, k, TR) to replace
c. Since both c and TR have the same height, the only invariant that
can be violated is the red rule on the root of TR, the new node, and
its parent, which can all be red. In the worst case we may have three
red nodes in a row. This is fixed by a single left rotation: if a black
node v has R(v) and R(R(v)) both red, we turn R(R(v)) black
and perform a single left rotation on v. The update is illustrated
in Figure 7. The rotation, however can again violate the red rule
between the root of the rotated tree and its parent, requiring another
rotation. The double-red issue might proceed up to the root of TL.
If the original root of TL is red, the algorithm may end up with a
red root with a red child, in which case the root will be turned black,
turning TL rank from 2ĥ − 1 to 2ĥ. If the original root of TL is
black, the algorithm may end up with a red root with two black
children, turning the rank of TL from 2ĥ − 2 to 2ĥ − 1. In both
cases the rank of the result tree is at most 1 + r(TL).

LEMMA 2. For two RB trees TL and TR, the RB JOIN algorithm
works correctly, runs with O(|r(TL)− r(TR)|) work, and returns
a tree satisfying the red-black invariants and with rank at most
1 + max(r(TL), r(TR)).

The proof is similar as Lemma 1.
Weight Balanced Trees. We store the weight of each subtree at
every node. The algorithm for joining two weight-balanced trees
is similar to that of AVL trees and RB trees. The pseudocode is
shown in Figure 4. The like function in the code returns true if
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Figure 7: An example of JOIN on red-black trees (ĥ = ĥ(TL) >

ĥ(TR)). We follow the right spine of TL until we find a black
node with the same black height as TR (i.e., c). Then a new
red Node(c, k, TR) is created, replacing c (Step 1). The only
invariant that can be violated is when either c’s previous parent
p or TR’s root d is red. If so, a left rotation is performed at
some black node. Step 2 shows the rebalance when p is red. The
black height of the rotated subtree (now rooted at p) is the same
as before (h + 1), but the parent of p might be red, requiring
another rotation. If the red-rule violation propagates to the
root, the root is either colored red, or rotated left (Step 3).

the two input tree sizes are balanced, and false otherwise. If TL and
TR have like weights the algorithm returns a new Node(TL, k, TR).
Suppose |TR| ≤ |TL|, the algorithm follows the right branch of TL
until it reaches a node c with like weight to TR. It then creates a new
Node(c, k, TR) replacing c. The new node will have weight greater
than c and therefore could imbalance the weight of c’s ancestors.
This can be fixed with a single or double rotation (as shown in
Figure 8) at each node assuming α is within the bounds given in
Section 2.

LEMMA 3. For two α weight-balanced trees TL and TR and
α ≤ 1 − 1√

2
≈ 0.29, the weight-balanced JOIN algorithm works

correctly, runs with O(|log(w(TL)/w(TR))|) work, and returns a
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(0): The rebalance process is currently 
at 𝑣𝑣, which means the tree rooted at 𝑢𝑢 
and all of its subtrees are balanced. 
(1): The result of the single rotation. 
(2): The result of the double rotation. 

(0) 

2 5 4 

Figure 8: An illustration of single and double rotations possibly
needed to rebalance weight-balanced trees. In the figure the
subtree rooted at u has become heavier due to joining in TL
and its parent v now violates the balance invariant.

tree satisfying the α weight-balance invariant and with rank at most
1 + max(r(TL), r(TR)).

The proof is shown in the full version of our paper (on arXiV) [6].
Treaps. The treap JOIN algorithm (as in Figure 5) first picks the
key with the highest priority among k, k(TL) and k(TR) as the root.
If k is the root then the we can return Node(TL, k, TR). Otherwise,
WLOG, assume k(TL) has a higher priority. In this case k(TL) will
be the root of the result, L(TL) will be the left tree, and R(TL), k
and TR will form the right tree. Thus JOIN recursively calls itself
on R(TL), k and TR and uses result as k(TL)’s right child. When
k(TR) has a higher priority the case is symmetric. The cost of
JOIN is therefore the depth of the key k in the resulting tree (each
recursive call pushes it down one level). In treaps the shape of
the result tree, and hence the depth of k, depend only on the keys
and priorities and not the history. Specifically, if a key has the tth

highest priority among the keys, then its expected depth in a treap is
O(log t) (also w.h.p.). If it is the highest priority, for example, then
it remains at the root.

LEMMA 4. For two treaps TL and TR, if the priority of k is the t-
th highest among all keys in TL∪{k}∪TR, the treap JOIN algorithm
works correctly, runs with O(log t + 1) work in expectation and
w.h.p., and returns a tree satisfying the treap invariant with rank at
most 1 + max(r(TL), r(TR)).
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From the above lemmas we can get the following fact for JOIN.

THEOREM 1. For AVL, RB and WB trees JOIN(TL, k, TR) does
O(|r(TL)− r(TR)|) work. For treaps JOIN does O(log t) work in
expectation if k has the t-th highest priority among all keys. For AVL,
RB, WB trees and treaps, JOIN returns a tree T for which the rank
satisfies max(r(TL), r(TR)) ≤ r(T ) ≤ 1 + max(r(TL), r(TR)).

4. OTHER FUNCTIONS USING JOIN
In this section, we describe algorithms for various functions that

use just JOIN. The algorithms are generic across balancing schemes.
The pseudocodes for the algorithms in this section is shown in
Figure 1.
Split. For a BST T and key k, SPLIT(T, k) returns a triple
(TL, b, TR), where TL (TR) is a tree containing all keys in T that are
less (larger) than k, and b is a flag indicating whether k ∈ T . The
algorithm first searches for k in T , splitting the tree along the path
into three parts: keys to the left of the path, k itself (if it exists), and
keys to the right. Then by applying JOIN, the algorithm merges all
the subtrees on the left side (using keys on the path as intermediate
nodes) from bottom to top to form TL, and merges the right parts to
form TR. Figure 9 gives an example.

THEOREM 2. The work of SPLIT(T, k) is O(log |T |) for all
balancing schemes described in Section 3 (w.h.p. for treaps). The
two resulting trees TL and TR will have rank at most r(T ).

PROOF. We only consider the work of joining all subtrees on the
left side. The other side is symmetric. Suppose we have l subtrees
on the left side, denoted from bottom to top as T1, T2, . . . Tl. We
have that r(T1) ≤ r(T2) ≤ · · · ≤ r(Tl). As stated above, we
consecutively join T1 and T2 returning T ′2, then join T ′2 with T3

returning T ′3 and so forth, until all trees are merged. The overall
work of SPLIT is the sum of the cost of l − 1 JOIN functions.

For AVL trees, red-black trees and weight-balanced trees, re-
call Theorem 1 that we have r(T ′i ) ≤ r(Ti) + 1, so r(T ′i ) ≤
r(Ti) + 1 ≤ r(Ti+1) + 1. According to Theorem 1, the work of
a single operation is O(|r(Ti+1)− r(T ′i )|). The overall complex-
ity is

∑l
i=1 |r(Ti+1) − r(T ′i )| ≤

∑l
i=1 r(Ti+1) − r(T ′i ) + 2 =

O(r(T )) = O(log |T |).
For treaps, each JOIN uses the key with the highest priority since

the key is always on a upper level. Hence by Lemma 4, the complex-
ity of each JOIN is O(1) and the work of split is at most O(log |T |)
w.h.p.

Also notice that when getting the final result TL and TR, the last
step is a JOIN on two trees, the larger one of which is a subtree of
the original T . Thus the rank of the two trees to be joined is of
rank at most r(T )− 1, according to Theorem 1 we have r(TL) and
r(TR) at most r(T ).

Join2. JOIN2(TL, TR) returns a binary tree for which the in-order
values is the concatenation of the in-order values of the binary trees
TL and TR (the same as JOIN but without the middle key). For
BSTs, all keys in TL have to be less than keys in TR. JOIN2 first
finds the last element k (by following the right spine) in TL and
on the way back to root, joins the subtrees along the path, which is
similar to SPLIT TL by k. We denote the result of dropping k in TL
as T ′L. Then JOIN(T ′L, k, TR) is the result of JOIN2. Unlike JOIN,
the work of JOIN2 is proportional to the rank of both trees since
both SPLIT and JOIN take at most logarithmic work.

THEOREM 3. The work of JOIN2(TL, TR) isO(r(TL)+r(TR))
for all balancing schemes described in Section 3 (bounds are w.h.p
for treaps).

Union, Intersect and Difference. UNION(T1, T2) takes two BSTs
and returns a BST that contains the union of all keys. The algorithm
uses a classic divide-and-conquer strategy, which is parallel. At each
level of recursion, T1 is split by k(T2), breaking T1 into three parts:
one with all keys smaller than k(T2) (denoted as L1), one in the
middle either of only one key equal to k(T2) (when k(T2) ∈ T1)
or empty (when k(T2) /∈ T1), the third one with all keys larger
than k(T2) (denoted as R1). Then two recursive calls to UNION
are made in parallel. One unions L(T2) with L1, returning TL, and
the other one unions R(T2) with R1, returning TR. Finally the
algorithm returns JOIN(TL, k(T2), TR), which is valid since k(T2)
is greater than all keys in TL are less than all keys in TR.

The functions INTERSECT(T1, T2) and DIFFERENCE(T1, T2)
take the intersection and difference of the keys in their sets, re-
spectively. The algorithms are similar to UNION in that they use one
tree to split the other. However, the method for joining is different.
For INTERSECT, JOIN2 is used instead of JOIN if the root of the
first is not found in the second. For DIFFERENCE, JOIN2 is used
anyway because k(T2) should be excluded in the result tree. The
base cases are also different in the obvious way.

THEOREM 4 (MAIN THEOREM). For all four balance schemes
mentioned in Section 3, the work and span of the algorithm (as
shown in Figure 1) of UNION, INTERSECT or DIFFERENCE on two
balanced BSTs of sizes m and n (n ≥ m) is O

(
m log

( n
m

+ 1
))

and O(logn logm) respectively (the bound is in expectation for
treaps).

A generic proof of Theorem 4 working for all the four balancing
schemes will be shown in the next section.

The work bound for these algorithms is optimal in the comparison-
based model. In particular considering all possible interleavings, the
minimum number of comparisons required to distinguish them is
log
(
m+n
n

)
= Θ

(
m log

(
n
m

+ 1
))

[17].
Other Functions. Many other functions can be implemented with
JOIN. Pseudocode for INSERT and DELETE was given in Figure 1.
For a tree of size n they both take O(logn) work.

5. THE PROOF OF THE MAIN THEOREM
In this section we prove Theorem 4, for all the four balance

schemes (AVL trees, RB trees, WB trees and treaps) and all three set
algorithms (UNION, INTERSECT, DIFFERENCE) from Figure 1. For
this purpose we make two observations. The first is that all the work
for the algorithms can be accounted for within a constant factor by
considering just the work done by the SPLITs and the JOINs (or
JOIN2s), which we refer to as split work and join work, respectively.
This is because the work done between each split and join is constant.
The second observation is that the split work is identical among the
three set algorithms. This is because the control flow of the three
algorithms is the same on the way down the recursion when doing
SPLITs—the algorithms only differ in what they do at the base case
and on the way up the recursion when they join.

Given these two observations, we prove the bounds on work by
first showing that the join work is asymptotically at most as large
as the split work (by showing that this is true at every node of the
recursion for all three algorithms), and then showing that the split
work for UNION (and hence the others) satisfies our claimed bounds.

We start with some notation, which is summarized in Table 2.
In the three algorithms the first tree (T1) is split by the keys in the
second tree (T2). We therefore call the first tree the decomposed
6The nodes in Td(v) form a subset of Td, but not necessarily a
subtree. See details later.
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Figure 9: An example of SPLIT in a BST with key 42. We first search for 42 in the tree and split the tree by the searching path, then
use JOIN to combine trees on the left and on the right respectively, bottom-top.

Notation Description
Tp The pivot tree
Td The decomposed tree
n max(|Tp|, |Td|)
m min(|Tp|, |Td|)

Tp(v), v ∈ Tp The subtree rooted at v in Tp
Td(v), v ∈ Tp The tree from Td that v splits6

si The number of nodes in layer i
vkj The j-th node on layer k in Tp
d(v) The number of nodes attached to a layer

root v in a treap

Table 2: Descriptions of notations used in the proof.

tree and the second the pivot tree, denoted as Td and Tp respec-
tively. The tree that is returned is denoted as Tr . Since our proof
works for either tree being larger, we use m = min(|Tp|, |Td|) and
n = max(|Tp|, |Td|). We denote the subtree rooted at v ∈ Tp
as Tp(v), and the tree of keys from Td that v splits as Td(v) (i.e.,
SPLIT(v, Td(v)) is called at some point in the algorithm). For
v ∈ Tp, we refer to |Td(v)| as its splitting size.

Figure 10 (a) illustrates the pivot tree with the splitting size anno-
tated on each node. Since SPLIT has logarithmic work, we have,

split work = O

∑
v∈Tp

(log |Td(v)|+ 1)

,
which we analyze in Theorem 6. We first, however, show that
the join work is bounded by the split work. We use the following
Lemma, which is proven in the appendix.

LEMMA 5. For Tr =UNION(Tp, Td) on AVL, RB or WB trees,
if r(Tp) > r(Td) then r(Tr) ≤ r(Tp) + r(Td).

THEOREM 5. For each function call to UNION, INTERSECT or
DIFFERENCE on trees Tp(v) and Td(v), the work to do the JOIN
(or JOIN2) is asymptotically no more than the work to do the SPLIT.

PROOF. For INTERSECT or DIFFERENCE, the cost of JOIN (or
JOIN2) is O(log(|Tr|+ 1)). Notice that DIFFERENCE returns the
keys in Td\Tp. Thus for both INTERSECT and DIFFERENCE we
have Tr ⊆ Td. The join work is O(log(|Tr| + 1)), which is no
more than O(log(|Td|+ 1)) (the split work).

For UNION, if r(Tp) ≤ r(Td), the JOIN will cost O(r(Td)),
which is no more than the split work.

Consider r(Tp) > r(Td) for AVL, RB or WB trees. The rank
of L(Tp) and R(Tp), which are used in the recursive calls, are at

50

20 30

11 8 17 13

7 2 7 53 6

3 4 4 3 1 41 1 5 12

𝑣31

𝑣21 𝑣22

𝑣11 𝑣12

𝑣03

𝑣13

𝑣01 𝑣02 𝑣04 𝑣05 𝑠0 = 5

𝑠1 = 3

𝑠2 = 2

𝑠3 = 13

2

1

0

layer
(a)

(b)

Figure 10: An illustration of splitting tree and layers. The tree
in (a) is Tp, the dashed circle are the exterior nodes. The num-
bers on the nodes are the sizes of the tree from Td to be split by
this node, i.e., the “splitting size” |Td(v)|. In (b) is an illustra-
tion of layers on an AVL tree.

least r(Tp)− 1. Using Lemma 5, the rank of the two trees returned
by the two recursive calls will be at least (r(Tp)− 1) and at most
(r(Tp)+r(Td)), and differ by at mostO(r(Td)) = O(log |Td|+1).
Thus the join cost is O(log |Td| + 1), which is no more than the
split work.

Consider r(Tp) > r(Td) for treaps. If r(Tp) > r(Td), then
|Tp| ≥ |Td|. The root of Tp has the highest priority among all |Tp|
keys, so on expectation it takes at most the |Tp|+|Td||Tp| ≤ 2-th place
among all the |Td|+ |Tp| keys. From Lemma 4 we know that the
cost on expectation is E[log t] + 1 ≤ logE[t] + 1 ≤ log 2 + 1,
which is a constant.

This implies the total join work is asymptotically bounded by the
split work.

We now analyze the split work. We do this by layering the pivot
tree starting at the leaves and going to the root and such that nodes
in a layer are not ancestors of each other. We define layers based
on the ranks and denote the size of layer i as si. We show that si
shrinks geometrically, which helps us prove our bound on the split
work. For AVL and RB trees, we group the nodes with rank i in
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layer i. For WB trees and treaps, we put a node v in layer i iff v has
rank i and v’s parent has rank strictly greater than i. Figure 10 (b)
shows an example of the layers of an AVL tree.

DEFINITION 1. In a BST, a set of nodes V is called a disjoint
set if and only if for any two nodes v1, v2 in V , v1 is not the ancestor
of v2.

LEMMA 6. For any disjoint set V ⊆ Tp,
∑
v∈V |Td(v)| ≤ |Td|.

The proof of this Lemma is straightforward.

LEMMA 7. For an AVL, RB, WB tree or a treap of size N , each
layer is a disjoint set, and si ≤ N

cbi/2c
holds for some constant

c > 1.

PROOF. For AVL, RB, WB trees and treaps, a layer is obviously
a disjoint set: a node and its ancestor cannot lie in the same layer.

For AVL trees, consider a node in layer 2, it must have at least
two descendants in layer 0. Thus s0 ≥ 2s2. Since an AVL tree with
its leaves removed is still an AVL tree, we have si ≥ 2si+2. Since
s0 and s1 are no more than N , we can get that si < N

2bi/2c
.

For RB trees, the number of black nodes in layer 2i is more than
twice as many as in layer 2(i+ 1) and less than four times as many
as in layer 2(i + 1), i.e., s2i ≥ 2s2i+2. Also, the number of red
nodes in layer 2i + 1 is no more than the black nodes in layer 2i.
Since s0 and s1 are no more than N , si < N

2bi/2c
.

For WB trees and treaps, the rank is defined as dlog2(w(T ))e−1,
which means that a node in layer i has weight at least 2i + 1. Thus
si ≤ (N + 1)/(2i + 1) ≤ N/2i.

Not all nodes in a WB tree or a treap are assigned to a layer. We
call a node a layer root if it is in a layer. We attach each node u in
the tree to the layer root that is u’s ancestor and has the same rank
as u. We denote d(v) as the number of descendants attached to a
layer root v.

LEMMA 8. For WB trees and treaps, if v is a layer root, d(v) is
less than a constant (in expectation for treaps). Furthermore, the
random variables d(v) for all layer roots in a treap are i.i.d. (See
the proof in the Appendix.)

By applying Lemma 7 and 8 we prove the split work. In the
following proof, we denote vkj as the j-th node in layer k.

THEOREM 6. The split work in UNION, INTERSECT and DIF-
FERENCE on two trees of size m and n is O

(
m log

(
n
m

+ 1
))

.

PROOF. The total work of SPLIT is the sum of the log of all
the splitting sizes on the pivot tree O

(∑
v∈Tp log(|Td(v)|+ 1)

)
.

Denote l as the number of layers in the tree. Also, notice that
in the pivot tree, in each layer there are at most |Td| nodes with
|Td(vkj)| > 0. Since those nodes with splitting sizes of 0 will not
cost any work, we can assume si ≤ |Td|. We calculate the dominant
term

∑
v∈Tp log(|Td(v)| + 1) in the complexity by summing the

work across layers:

l∑
k=0

sk∑
j=1

log(|Td(vkj)|+ 1) ≤
l∑

k=0

sk log

(∑
j |Td(vkj)|+ 1

sk

)

=

l∑
k=0

sk log

(
|Td|
sk

+ 1

)

We split it into two cases. If |Td| ≥ |Tp|, |Td|sk
always dominates

1. we have:
l∑

k=0

sk log

(
|Td|
sk

+ 1

)
=

l∑
k=0

sk log

(
n

sk
+ 1

)
(1)

≤
l∑

k=0

m

cbk/2c
log

(
n

m/cbk/2c
+ 1

)
(2)

≤ 2

l/2∑
k=0

m

ck
log

n

m/ck

≤ 2

l/2∑
k=0

m

ck
log

n

m
+ 2

l/2∑
k=0

k
m

ck

= O
(
m log

n

m

)
+O(m)

= O
(
m log

( n
m

+ 1
))

(3)

If |Td| < |Tp|, |Td|sk
can be less than 1 when k is smaller, thus the

sum should be divided into two parts. Also note that we only sum
over the nodes with splitting size larger than 0. Even though there
could be more than |Td| nodes in one layer in Tp, only |Td| of them
should count. Thus we assume sk ≤ |Td|, and we have:

l∑
k=0

sk log

(
|Td|
sk

+ 1

)
=

l∑
k=0

sk log

(
m

sk
+ 1

)
(4)

≤
2 logc

n
m∑

k=0

|Td| log(1 + 1)

+

l∑
k=2 logc

n
m

n

cbk/2c
log

(
m

n/cbk/2c
+ 1

)
(5)

≤ O
(
m log

n

m

)
+ 2

l
2
−logc

m
n∑

k′=0

m

ck′
log ck

′

= O
(
m log

n

m

)
+O(m)

= O
(
m log(

n

m
+ 1)

)
(6)

From (1) to (2) and (4) to (5) we apply Lemma 7 and the fact that
f(x) = x log(n

x
+ 1) is monotonically increasing when x ≤ n.

For WB trees and treaps, the calculation above only includes the
log of splitting size on layer roots. We need to further prove the
total sum of the log of all splitting size is still O

(
m log

(
n
m

+ 1
))

.
Applying Lemma 8, the expectation is less than:

E

[
2

l∑
k=0

xk∑
j=1

d(vkj) log((Td(vkj) + 1)

]

= E[d(vkj)]× 2

l∑
k=0

xk∑
j=1

log((Td(vkj) + 1)

= O
(
m log

( n
m

+ 1
))

For WB trees d(vkj) is no more than a constant, so we can also
come to the same bound.

To conclude, the split work on all four balancing schemes of all
three functions is O

(
m log

(
n
m

+ 1
))

.
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THEOREM 7. The total work of UNION, INTERSECT or DIF-
FERENCE of all four balancing schemes on two trees of size m and
n (m ≥ n) is O

(
m log

(
n
m

+ 1
))

.

This directly follows Theorem 5 and 6.

THEOREM 8. The span of UNION and INTERSECT or DIFFER-
ENCE on all four balancing schemes is O(logn logm). Here n and
m are the sizes of the two tree.

PROOF. For the span of these algorithms, we denote D(h1, h2)
as the span on UNION, INTERSECT or DIFFERENCE on two trees
of height h1 and h2. According to Theorem 5, the work (span) of
SPLIT and JOIN are both O(log |Td|) = O(h(Td)). We have:

D(h(Tp), h(Td)) ≤ D(h(Tp)− 1, h(Td)) + 2h(Td)

Thus D(h(Tp), h(Td)) ≤ 2h(Tp)h(Td) = O(logn logm).

Combine Theorem 7 and 8 we come to Theorem 4.

6. EXPERIMENTS
To evaluate the performance of our algorithms we performed sev-

eral experiments across the four balancing schemes using different
set functions, while varying the core count and tree sizes. We also
compare the performance of our implementation to other existing
libraries and algorithms.

Experiment setups and baseline algorithms.
For the experiments we use a 64-core machine with 4 x AMD

Opteron(tm) Processor 6278 (16 cores, 2.4GHz, 1600MHz bus
and 16MB L3 cache). Our code was compiled using the g++ 4.8
compiler with the Cilk Plus extensions for nested parallelism. The
only compilation flag we used was the -O2 optimization flag. In
all our experiments we use keys of the double data type. The size
of each node is about 40 bytes, including the two child pointers,
the key, the balance information, the size of the subtree, and a
reference count. We generate multiple sets varying in size from
104 to 108. Depending on the experiment the keys are drawn either
from an uniform or a Gaussian distribution. We use µ and σ to
denote the mean and the standard deviation in Gaussian distribution.
Throughout this section n and m represent the two input sizes for
functions with two input sets (n ≥ m).

We test our algorithm by comparing it to other available imple-
mentations. This includes the sequential version of the set functions
defined in the C++ Standard Template Library (STL) [22] and STL’s
std::set (implemented by RB tree). To see how well our al-
gorithm performs in a parallel setting, we compare it to parallel
WBB-trees [14] and the MCSTL library [15], both supporting array-
tree UNION.

Comparing the balancing schemes and functions.
To compare the four balancing schemes we choose UNION as the

representative operation. Other operations give similar results. We
compare the schemes across varying thread counts and sizes.

Figure 11 (a) shows the runtime of UNION for varying tree sizes
and all four balancing schemes on 64 cores. The times are very
similar across the balancing schemes, differing by no more than
10%.

Figure 11 (b) shows the speedup curves for UNION on a varying
number of cores with both inputs of size 108. All balancing schemes
achieve a speedup of about 45 on 64 cores, and about 30 on 32 cores.
The less-than-linear speedup beyond 32 cores is not due to lack of
parallelism, since when we ran the same experiments on significantly

smaller input (and hence less parallelism) we get very similar curves
(not shown). Instead it seems to be due to saturation of the memory
bandwidth.

We use the AVL tree as the representative tree to compare different
functions. Figure 11 (c) compares time for the UNION, INTERSECT
and DIFFERENCE functions. The size of the larger tree is fixed (108),
while the size of the smaller tree varies from 104 to 108. As the plot
indicates, the three functions have very similar performance.

The experiments are a good indication of the performance of dif-
ferent balancing schemes and different functions, while controlling
other factors. The conclusion is that all schemes perform almost
equally on all the set functions. It is perhaps not surprising that all
balancing schemes achieve similar performance because the dom-
inant cost is in cache misses along the paths in the tree, and all
schemes keep the trees reasonably balanced. The AVL tree is al-
ways slightly faster than the other trees and this is likely due to the
fact that they maintain a slightly stricter balance than the other trees,
and hence the paths that need to be traversed are slightly shorter. For
different set functions the similar performance is also as expected
given the similarity of the code.

Comparing to sequential implementations.
The STL supports set_union, set_intersection, and

set_difference on any container class, including sets based
on red-black trees, and sorted vectors (arrays). Since the STL does
not offer any parallel version of these functions we could only use it
for sequential experiments. For two inputs of size n and m, m ≤ n,
it takes O(m+ n) time on std::vectors by moving from left
to right on the two inputs, comparing the current values, and writing
the lesser to the end of the output, andO((n+m) log(n+m)) time
on std::set by inserting the elements in one set into the other. In
the case of std::set we can do better by inserting elements from
the smaller set into the larger, leading a time of O(m log(n+m)).
This is also what we do in our experiments. For vectors we stick
with the available set_union implementation.

Figure 11 (d) gives a comparison of times for UNION. For equal
lengths our implementation is about a factor of 3 faster than the
set variant (red-black trees), and about 8 times slower than the
vector variant. This is not surprising since we are asymptotically
faster than their red-black tree implementation, and their array-
based implementation just reads and writes the values, one by one,
from flat arrays, and therefore has much less overhead and much
fewer cache misses. For taking the union of smaller and larger
inputs, our UNION is orders of magnitude faster than either STL
version. This is because their theoretical work bound (O(m+n) and
O(m log(m+ n)) is worse than our O(m log(n/m+ 1)), which
is optimal in the comparison model.

Comparing to parallel implementations..
To see how well our algorithm performs in a parallel setting,

we compare it to parallel WBB-trees [14] and the MCSTL library
[15]. WBB-trees, as well as the MCSTL, offer an interface for
bulk insertions and deletions, which take a tree and a sorted array
and either insert the elements from the array into the tree, or delete
them. Bulk effectively gives a UNION, which we refer to this as
an array-tree UNION as opposed to our symmetric tree-tree UNION.
If the array is the smaller input, array-tree unions have an inherent
advantage over tree-tree unions since accessing an array is much
more cache efficient than accessing an tree. Also, the WBB-tree
itself has a more cache-aware layout (8 keys per cache line as
opposed to 1), leading to a better cache utilization compared to both
the MCSTL and our implementation. In this section, we test the
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Figure 11: (a) Times for UNION as a function of size (n = 108) for different BBSTs; (b) speed up of UNION for different BBSTs; (c)
times for various operations on AVL trees as a function of size (n = 108); (d) comparing STLs set_union with our UNION; (e, f, g,
h) comparing our UNION to other parallel search trees; (e, h) input keys are uniformly distributed doubles in the range of [0, 1]; (f, g)
inputs keys follow a normal distribution of doubles - the mean of the main tree is always µ1 = 0, while the mean of the bulk is µ2 = 1.
Figure (f) uses a standard deviation of σ = 0.25, while Figure (g) shows the performance across different standard deviations.

performance of our implementation of JOIN-based UNION, WBB-
trees and the MCSTL library on different input distributions.

In Figure 11 (e) we show the result of UNION on uniformly dis-
tributed doubles in the range of [0,1] across 64 cores. We set the
input size to n = m = 10i, i from 4 to 8. The three implementa-
tions have similar performance when n = m = 104. As the input
size increases, MCSTL shows much worse performance than the
other two because of the lack of parallelism (Figure 11 (h) is a good
indication), and the WBB-tree implementation is slightly better than
ours. This is likely due to better cache performance as discussed
above.

Figure 11 (f) shows the result of a Gaussian distribution with
doubles, also on all 64 cores with set sizes of n = m = 10i for
i = 4 through 8. The distributions of the two sets have means at
0 and 1 respectively, and both having a standard deviation of 0.25,
meaning that the data in the two sets have less overlap comparing
to a uniform distribution (as in (e)). In this case our code achieves
better performance than the other two implementations. For our
algorithms less overlap in the data means more parts of the trees will
be untouched, and therefore less nodes will be operated on. This in
turn leads to less processing time.
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We also do a study on how the overlap of the data sets affects
the performance of each algorithm. We generate two sets of size
n = m = 108, each from a Gaussian distribution. The distributions
of the two sets have means at 0 and 1 respectively, and both have an
equal standard deviation varying in {1, 1/2, 1/4, 1/8, 1/16}. The
different standard deviations are to control the overlap of the two
sets, and ideally less overlap should simplify the problem. Figure
11 (g) shows the result of the three parallel implementations on a
Gaussian distribution with different standard deviations. From the
figure we can see that MCSTL and WBB-tree are not affected by
different standard deviations, while our join-based union takes ad-
vantage of less overlapping and achieves a much better performance
when σ is small. This is not surprising since when the two sets are
less overlapped, e.g., totally disjoint, our UNION will degenerate to
a simple JOIN, which costs only O(logn) work. This behavior is
consistent with the “adaptive” property (not always the worst-case)
in [13]. This indicates that our algorithm is the only one among the
three parallel implementations that can detect and take advantage
of less overlapping in data, hence have a much better performance
when the two operated sets are less overlapped.

We also compare the parallelism of these implementations. In
Figure 11 (h) we show their performance across 64 cores. The inputs
are both of size 108, and generated from an uniform distribution of
doubles. It is easy to see that MCSTL does not achieve good par-
allelism beyond 16 cores, which explains why the MCSTL always
performs the worst on 64 cores in all settings. As we mentioned
earlier, the WBB-tree are slightly faster than our code, but when it
comes to all 64 cores, both algorithms have similar performance.
This indicates that our algorithm achieves better parallelism.

To conclude, in terms of parallel performance, our code and
WBB-trees are always much better than the MCSTL because of
MCSTL’s lack of parallelism. WBB-trees achieve a slightly better
performance than ours on uniformly distributed data, but it does not
improve when the two sets are less overlapped. Thus our code is
much better than the other two implementations on less overlapped
data.

Comparing to a concurrent data structure.
We also compare our algorithm to an implementation of concur-

rent AVL trees [11]. UNION can be implemented by concurrent
insertions of the smaller set into a larger set, and hence requires
Ω(m logn) work. We could not get their open-source implementa-
tion to run efficiently, so we compare to their previously reported
times. As reported in Figure 15, top left of [11], they process 7 mil-
lion keys per second (insertions and deletions) on 16 threads (for 1
million keys). Ours does 80 million keys per second when unioning
two sequences each of length 1-10 million, again on 16 threads. This
is 11x faster than theirs.7 We note, however, that this comparison is
not really fair since they support concurrent operations (searches,
insertions, deletions, etc.), which we do not.

7. CONCLUSIONS
In this paper, we study ordered sets implemented with balanced

binary search trees. We show for the first time that a very simple
“classroom-ready” set of algorithms due to Adams’ are indeed work
optimal when used with four different balancing schemes–AVL,
RB, WB trees and treaps—and also highly parallel. The only tree-
specific algorithm that is necessary is the JOIN, and even the JOINs
are quite simple, as simple as INSERT or DELETE. It seems it is
not sufficient to give a time bound to JOIN and base analysis on

7Although on different processors, their processors are faster
(2.66Ghz vs. 2.4Ghz).

it. Indeed if this were the case it would have been done years ago.
Instead our approach defines the notion of a rank (differently for
different trees) and shows invariants on the rank. It is important that
the cost of JOIN is proportional to the difference in ranks. It is also
important that when joining two trees the resulting rank is only a
constant bigger than the larger rank of the inputs. This insures that
when joins are used in a recursive tree, as in UNION, the ranks of
the results in a pair of recursive calls does not differ much on the
two sides. This then ensures that the set functions are efficient.

We also test the performance of our algorithm. Our experiments
show that our sequential algorithm is about 3x faster for union on
two maps of size 108 compared to the STL red-black tree imple-
mentation. In parallel settings our code is much better than the two
baseline algorithms (MCSTL and WBB-tree) on less overlapped
data, while still achieves similar performances with WBB-tree when
the two sets are more intermixed. Our code also achieves 45x
speedup on 64 cores.
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APPENDIX
A. PROOFS FOR SOME LEMMAS

A.1 Proof for Lemma 8
PROOF. One observation in WB trees and treaps is that all nodes

attached to a single layer root form a chain. This is true because if
two children of one node v are both in layer i, the weight of v is
more than 2i+1, meaning that v should be layer i+ 1.

For a layer root v in a WB tree on layer k, w(v) is at most
2k+1. Considering the balance invariant that its child has weight
at most (1 − α)w(v), the weight of the t-th generation of its de-
scendants is no more than 2k+1(1 − α)t. This means that after
t∗ = log 1

1−α
2 generations, the weight should decrease to less than

2k. Thus d(v) ≤ log 1
1−α

2, which is a constant.
For treaps consider a layer root v on layer k that has weight

N ∈ [2k, 2k+1). The probability that d(v) ≥ 2 is equal to the
probability that one of its grandchildren has weight at least 2k. This
probability P is:

P =
1

2k

N∑
i=2k+1

i− 2k

i
(7)

≤ 1

2k

2k+1∑
i=2k+1

i− 2k

i
(8)

≈ 1− ln 2 (9)

We denote 1− ln 2 as pc. Similarly, the probability that d(v) ≥ 4
should be less than p2c , and the probability shrink geometrically as
d(v) increase. Thus the expected value of d(v) is a constant.

Since treaps come from a random permutation, all s(v) are
i.i.d.

A.2 Proof for Lemma 5
PROOF. We are trying to show that for Tr =UNION(Tp, Td) on

AVL, RB or WB trees, if r(Tp) > r(Td) then r(Tr) ≤ r(Tp) +
r(Td).

For AVL and RB trees we use induction on r(Tp)+r(Td). When
r(Td) + r(Tp) = 1 the conclusion is trivial. If r = r(Tp) > r(Td),
Tp will be split into two subtrees, with rank at most r(Tp)− 1 since
we remove the root. Td will be split into two trees with height at
most r(Td) (Theorem 2). Using the inductive hypothesis, the two
recursive calls will return two trees of height at most r(Tp)− 1 +
r(Td). The result of the final JOIN is therefore at most r(Tp) +
r(Td).

For WB trees, |T | ≤ |Tp|+ |Td| ≤ 2|Tp|. Thus r(T ) ≤ r(Tp) +
1 ≤ r(Tp) + r(Td).
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