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ABSTRACT
We present history-independent alternatives to a B-tree, the primary
indexing data structure used in databases. A data structure is his-
tory independent (HI) if it is impossible to deduce any information
by examining the bit representation of the data structure that is not
already available through the API.

We show how to build a history-independent cache-oblivious B-
tree and a history-independent external-memory skip list. One of
the main contributions is a data structure we build on the way—a
history-independent packed-memory array (PMA). The PMA sup-
ports efficient range queries, one of the most important operations
for answering database queries.

Our HI PMA matches the asymptotic bounds of prior non-HI
packed-memory arrays and sparse tables. Specifically, a PMA
maintains a dynamic set of elements in sorted order in a linear-
sized array. Inserts and deletes take an amortized O(log2 N) el-
ement moves with high probability. Simple experiments with our
implementation of HI PMAs corroborate our theoretical analysis.
Comparisons to regular PMAs give preliminary indications that the
practical cost of adding history-independence is not too large.

Our HI cache-oblivious B-tree bounds match those of prior non-
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HI cache-oblivious B-trees. Searches take O(logB N) I/Os; in-
serts and deletes take O( log2 N

B
+ logB N) amortized I/Os with

high probability; and range queries returning k elements take
O(logB N + k/B) I/Os.

Our HI external-memory skip list achieves optimal bounds with
high probability, analogous to in-memory skip lists: O(logB N)
I/Os for point queries and amortized O(logB N) I/Os for in-
serts/deletes. Range queries returning k elements run in
O(logB N + k/B) I/Os. In contrast, the best possible high-
probability bounds for inserting into the folklore B-skip list, which
promotes elements with probability 1/B, is just Θ(logN) I/Os.
This is no better than the bounds one gets from running an in-
memory skip list in external memory.

1. INTRODUCTION
A data structure is history independent (HI) if its internal
representation reveals nothing about the sequence of opera-
tions that led to its current state [43, 47]. In this paper, we
study history independence for persistent, disk-resident dic-
tionary data structures.

We give two efficient history-independent alternatives to
the B-tree, the primary indexing data structure used in
databases. Specifically, we give an HI external-memory skip
list and an HI cache-oblivious1 B-tree.

One of the main contributions of the paper is a data struc-
ture we build on the way: a history-independent packed-
memory array (PMA). As we explain, the PMA [14, 18] is
an unlikely candidate data structure to be made history in-
dependent, since traditional PMAs rely on history so funda-
mentally. The HI PMA is one of the primary building blocks
in the HI cache-oblivious B-tree. However, it can also be
bolted onto any dictionary data structure, using the PMA to
hold the actual elements and deliver fast range queries.

Notions of History Independence
Informally, history independence partially protects a disk-
resident data structure when the disk is stolen by—or given
to—a third party (the “observer”). This observer can access
the data structure through the normal API but can also see
1A cache-oblivious [29, 30, 51] algorithm or data structure is
memory-hierarchy universal, in that it has no memory-hierarchy-
specific parameterization (see Section 1.1).
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its bit and pointer representation on disk. An HI data struc-
ture’s bit representation never leaks any information to the
observer that he could not learn through the API.

There are two notions of history independence, weak his-
tory independence (WHI) and strong history independence
(SHI) [47]. The notions are distinguished by how many
times the observer can look at the data structure—that is by
how many times an interloper can steal (or otherwise gain
access to) the disk on which the data structure resides. A
weakly history-independent data structure is history inde-
pendent against an observer who can see the memory rep-
resentation once. A strongly history-independent data struc-
ture is history independent against an observer who can see
the memory representation multiple times.

In this paper, we focus on weak history independence.
From a performance perspective, weak HI is a stronger no-
tion because it allows provably stronger performance guar-
antees (see Section 2). Protecting against multiple observa-
tions reduces achievable performance.

Weak history independence is the appropriate notion of
history independence in situations where only one observa-
tion is possible. For example, when the data is on a device
that can be separated from the owner (say a portable or em-
bedded device), the owner no longer interacts with the de-
vice. WHI provides the same level of protection in this case
with significantly better performance compared to SHI.

History Independence and Data
History independence in a database can have major advan-
tages, depending on the kind of data that is being stored and
the security requirements.

HI data structures naturally support information-
theoretically-secure delete. In contrast, with more standard
secure delete (where the file system overwrites deleted data
with zeros), information about deleted data can leak from
the memory representation. For example, it reveals how
much data was deleted and where in the keyspace it might
have been. In fact, a long history of failed redactions is one
of the original motivations for history independence [36].
History independence guarantees that the memory repre-
sentation will leak no information about these previous
(now secure) deletes. Encryption is not a panacea to protect
history unconditionally, since determined attackers can
recover the key used to encrypt on-disk data [35].

In a database, the source of the data can be more sensitive
than the data itself. As a toy example, consider a database of
known organized crime members maintained by the police.
The police might want to share such a database with select
individuals without revealing the order and times in which
the data was added to the database. Revealing this order
might leak information about how and when the data was
collected, which could reveal sources that the police want
to stay hidden. Journalists may desire the same property to
ensure their sources’ anonymity.

In such cases, we need to be particularly careful about
avoiding information leaks by side channels. Since leakage
can be subtle and hard to quantify, it is beneficial to have a
guarantee that nothing extraneous is revealed, which is ex-
actly what history independence guarantees. HI data struc-
tures naturally hide the order in which data was inserted.

History Independence in Persistent Storage
This paper focuses on history independence for external-
memory dictionaries. This area of history independence was
initiated by Golovin [32, 33]; see Section 1.4 for details.

The ubiquitous (non-history-independent) external-
memory dictionary is the B-tree.

Our objective is to build history-independent, I/O effi-
cient external-memory dictionaries.We support standard dic-
tionary operations: insertions, deletions, searches, and range
queries. Our two external-storage computational models
(the external-memory model [3] and the cache-oblivious
model [29, 30, 51]) apply to both rotating disks and SSDs.

We give weakly history-independent data structures for
persistent storage; these are easy to implement and retain
strong performance guarantees. We show that even range-
query data structures that seem to be inherently history de-
pendent—in particular, packed-memory array or sparse ta-
bles [14,16–18,38,41,66]—can be made weakly history in-
dependent. Overall, our results demonstrate that it is pos-
sible to build efficient external-memory (and even cache-
oblivious) history-independent data structures for indexing.

History Independence in Persistent Storage vs. RAM
History independence has been vigorously explored in the
context of data structures that reside in RAM [20, 21, 23, 36,
43, 46, 47, 61] (see Section 1.4), but significantly less so in
external memory. Although there is some theoretical work
on history-independent on-disk data structures [31–33] and
experimental work on history-independent file systems [10–
12, 56], the area is substantially less explored.

This lacuna may seem surprising, since many of the classi-
cal arguments in support of history independence especially
apply to disks. Hard drives are more vulnerable than RAM
because they are persistent and easier to steal, making it eas-
ier for an attacker to observe on-disk data.

1.1 I/O and Cache-Oblivious Models
We prove our results using the classic models for analyz-
ing on-disk algorithms and data structures: the disk-access
machine (DAM) model of Aggarwal and Vitter [3] and the
cache-oblivious model of Frigo et al. [29,30,51]. The DAM
has an internal memory (RAM) of size M and an arbitrarily
large external memory (disk). Data is transferred between
RAM and disk in blocks of size B < M . The performance
measure is transfers (I/Os). Computation is free.

The cache-oblivious model extends the DAM model. Now
parameters B and M are unknown to the algorithm designer
or coder. They can only be used as parameters in analyses.

Thus, an optimal cache-oblivious data structure is not pa-
rameterized by any block, cache or RAM size, or memory-
or disk-access times. Remarkably, many problems have op-
timal (and practical) cache-oblivious solutions, including B-
trees [14, 15, 22]. Informally, a cache-oblivious B-tree has
approximately optimal memory or I/O performance at every
level of an unknown multilevel memory hierarchy.

1.2 Packed-Memory Arrays and External-
Memory Dictionaries

In this paper, we give a history-independent PMA and two
external-memory dictionaries: a history-independent exter-
nal skip list and a history-independent cache-oblivious B-
tree. This subsection puts our results in context.

We first define a PMA. Then we describe the technical
issues involved in making a history-independent PMA. We
(this paper’s authors) were surprised when we first suspected
that a history-independent PMA could indeed exist. Here,
we try to articulate why the PMA might seem to be an un-
likely candidate data structure to make history independent,
but why it is nonetheless possible.
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We next explain why a history independent PMA leads, al-
most directly, to an HI cache-oblivious B-tree, the first non-
trivial history-independent cache-oblivious data structure.

Finally, we discuss the history-independent external-
memory skip list. This HI data structure still offers high-
probability guarantees, analogous to in-memory skip lists.
See Section 2 for the definition of with high probability,
which we also write as “whp”.

Although the idea of a B-skip list, which promotes ele-
ments with probability 1/B rather than probability 1/2 is
folklore and has appeared in the literature repeatedly [1, 25,
26,33], we prove that its high-probability I/O guarantees are
asymptotically no better than those of an in-memory skip list
run in external memory.

Packed-Memory Arrays
One of the classic data-structural problems is called sequen-
tial file maintenance: maintain a dynamic set of elements
in sorted order in a linear-sized array. If there are N ele-
ments, then the array has Θ(N) empty array positions or
gaps interspersed among the elements to accommodate fu-
ture insertions. The gaps allow some elements to shift left or
right to open slots for new elements—like shifting books on
a bookshelf to make room for new books.

Remarkably, there are data structures for these prob-
lems that are efficient even for adversarial inserts and
deletes. Indeed, the number of element moves per update
is only O(log2N) both amortized [38, 63] and in the worst
case [64–66], which is optimal [24].

In external memory, this data structure is called a packed-
memory array [14,18]. It supports inserts, deletes, and range
queries. Given the location where we want to insert or delete
(which can be found using a separate indexing structure,
e.g., [15, 22]), it takes only O(1 + (log2N)/B) amortized
I/Os to shift the elements. Given the starting point, a range
query returning k elements costs Θ(1 + k/B) I/Os.2

Prior PMAs operate as follows. To insert a new element
after an existing element or to delete an element, find an en-
closing subarray or range, and rebalance. This spreads out
the elements (and gaps) within that range. The rebalance
range is chosen based upon the density within the range,
where ranges have minimum and maximum allowed den-
sities. These thresholds depend upon the size of the range:
small ranges have high thresholds for the maximum density
and low thresholds for the minimum density. The larger a
range is, the less variability is allowed in its density. The
algorithmic subtlety has to do with choosing the right rebal-
ance ranges and the right minimum and maximum density
thresholds for each range size.

However, range densities are very history dependent. For
example, if you repeatedly insert towards the front of an
array or if you repeatedly delete from the back of the ar-
ray, then the front of the array will be denser than the back.
How could we possibly make a version of this data structure,
that is history independent—that is, where newly inserted (or
deleted) elements do not seem to increase (or decrease) some
local density? We answer this question in this paper.

To use a more evocative image, picture a long trough
where you are pouring sand in one location (corresponding
to inserts) and letting out sand in another location (corre-
sponding to deletes). As the sand piles up, the pile gradually
2This scanning bound is a further requirement on how the elements
are distributed. Beyond the O(N) overall space limitation, only
O(1) gaps can separate two consecutive elements.

flattens (corresponding to local rebalances). Although rebal-
ances may flatten out the pile, we may still expect a bump for
newly arrived sand, and a depression for recently departed
sand. Perhaps surprisingly, we can avoid bumps and depres-
sions with mostly local rebalances.

Cache-Oblivious B-Trees
A B-tree is a dictionary supporting search, insert, delete,
and range query operations. There are cache-oblivious ver-
sions [13, 15, 22, 40, 55].

A history-independent PMA can immediately yield a
history-independent cache-oblivious B-tree. The idea is to
take a PMA and “glue” it to a static cache-oblivious B-
tree [51]. For details, see [15, 22]. We use a similar method
to construct our history-independent cache-oblivious B-tree
in Section 3.

External-Memory Skip Lists
The skip list is an elegant search-tree alternative introduced
by Pugh [53]. Skip lists are randomized data structures hav-
ing a weakly history independent pointer structure [31, 53].

Skip lists with N elements support searches, inserts, and
deletes in O(logN) operations whp and range queries re-
turning k elements in O(logN + k) operations whp [27,
42, 50]. They are heavily used in internal-memory algo-
rithms [5, 8, 9, 28, 34, 37, 39, 49, 57].

This paper gives a simple and provably good external-
memory history-independent skip list, which has high prob-
ability guarantees. Specifically, our skip list supports insert,
deletes, and searches with O(logB N) I/Os whp, and range
queries returning k elements withO(logB N+k/B) whp—
which is just the search plus scan cost. Thus, our history
independent, external memory skip list has high-probability
bounds matching those of a B-tree.

Our challenge is to tweak the folklore B-skip list [1,25,26,
33] as little as possible (and in a history-independent way)
so that we can achieve high-probability bounds for searches
and inserts while maintaining optimal range queries.

1.3 Results
We begin by giving an efficient, history-independent packed
memory array.

THEOREM 1. There exists a weakly history-independent
packed-memory array on N elements which can perform
inserts and deletes in O(log2N) amortized element moves
with high probability. This PMA requires O(N) space,
can perform inserts and deletes in amortized O

(
log2N
B +

logB N
)

I/Os with high probability, and can perform a
range query for k elements in O(1 + k/B) I/Os.

When B = Ω(logN log logN) (reasonable on today’s
systems), then log2N

B = O(logB N), so inserts and deletes
in our PMA have the same I/O complexity as in a B-tree.

Theorem 1 directly yields a history-independent cache-
oblivious B-tree with these performance bounds:

THEOREM 2. There exists a weakly history-independent,
cache-oblivious B-tree on N elements which can perform
inserts and deletes in O

(
log2N
B + logB N

)
amortized I/Os

with high probability. This cache-oblivious B-tree requires
O(N) space and can answer a range query for k elements
inO(logB N+k/B) I/Os, i.e., the search plus the scan cost.

291



We give a simple and provably good external-memory
history-independent skip list, which has high probability
guarantees analogous to in-memory skip lists.

THEOREM 3. There exists a weakly history-independent,
external-memory skip list on N elements which can perform
look-ups in O(logB N) I/Os with high probability. For a
parameter ε > 0, the skip-list requires O(logB N) amor-
tized I/Os for inserts and deletes, with a worst case of
O(Bε logN) I/Os, all with high probability. This skip-list
requires O(N) space and can answer a range query for k
elements in O( 1

ε logB N + k/B) I/Os with high probability.

The parameter ε indicates a small trade-off between the
worst-case rebuild cost after an update and the cost of
medium-size range queries (see Section 6).

We contrast our data structure with the B-skip list, which
promotes elements from one level to the next with proba-
bility 1/B. We prove that with high probability, there exist
at least Ω(

√
NB) elements where the cost to search for any

one of them is O(log N
B ). Thus, the high-probability I/O

bounds for searching in a B-skip list are not asymptotically
better than for searching in a regular (internal-memory) skip
list that is implemented in external memory.

1.4 Related Work

History of History Independence
The history of history independence spans nearly four
decades. The central notions of history independence pre-
date its formalism.

One of the key ideas of history independence is unique
representation, which was studied as far back as 1977 by
Snyder [59]. Many uniquely represented data structures
were published before the conception of history indepen-
dence [4, 6, 7, 52–54, 59, 60]. Similar to unique repre-
sentation, the idea of randomized structures that are uni-
formly represented, that is, have representations drawn from
a distribution irrespective of the past history, emerged with
Pugh’s skip list [52, 53] and Aragon and Seidel’s treap [7].

Nearly a decade later, Micciancio [43] defined oblivious
data structures as those whose topology does not reveal the
sequence of operations that led to the current state. In 2001,
Naor and Teague [47] strengthened obliviousness to history
independence (“anti-persistence”), generalizing it to include
the entire bit representation of the structure, including mem-
ory addresses.

Hartline et al. [36] proved that a reversible data structure
(i.e. one whose state graph is strongly connected) is SHI if
and only if it fixes a canonical representation for each state
depending only on initial (possibly random) choices made
before any operations are performed.

Buchbinder and Petrank [23] further explored strong ver-
sus weak history independence, proving a separation be-
tween the two notions for heaps and queues in a comparison-
based model.

History-independent data structures are well-studied when
the objective is to minimize RAM computations. Exam-
ples include SHI hashing [20,46,47], dictionaries and order-
maintenance [20], and history-independent data structures
for computational geometry [21, 61].

Golovin [32, 33] began an algorithmic study of history-
independent data structures in external-memory. First,
Golovin proposed the B-treap [32], a strongly history-

independent external-memory B-tree variant based on
treaps [7].

Golovin notes that while the B-treap is a unique-
representation data structure supporting B-tree operations
with low overhead, from a practical point of view, it is
complicated and difficult to implement [33]. Golovin thus
proposes a strongly history-independent B-skip list [33] as
a simpler alternative to the B-treap. This data structure
achievesO(logB N) I/Os in expectation for searches and up-
dates and O(k/B + logB N) I/Os in expectation for range
queries returning k elements.

Golovin’s B-skip list builds upon the folklore extension
of skip lists (see e.g., [1, 25, 26, 33]): promote an element
from one level to the next with probability 1/B, rather
than 1/2. The folklore B-skip list’s I/O bounds are only
in expectation, and do not extend to good high probability
bounds (see Lemma 15).

Other Applications of History Independence
The theoretical work on history independence in external
memory complements the security and experimental work
on history-independent data structures for persistent stor-
age, such as file systems, cloud storage, voting systems and
databases [10–12, 19, 44, 45, 56].

History independence has many applications in security
and privacy. For example, history-independent data struc-
tures help to guarantee privacy in incremental signature
schemes [43] and vote-storage mechanisms [19, 44, 45].

History-independent data structures often have nice prop-
erties. For example, skip lists [53] have weakly history-
independent topologies, and are weight balanced [48] in a
randomized sense. Canonical representations [36] find ap-
plications in other areas besides security, e.g. concurrent
data structures [58], equality testing [60] and dynamic and
incremental algorithms [2, 52].

2. PRELIMINARIES
An eventEn on a problem of size n occurs with high proba-
bility (whp) if Pr [En] ≥ 1−1/nc for some constant c. Often
the event En is parametrized by some constant d, in particu-
lar, because the event is defined using Big Oh notation. (See,
e.g., Theorem 11.) In this case, we can say more strongly
that for every c, there is a d so that Pr [En] ≥ 1− 1/nc. We
use high probability guarantees to bound a data structure’s
performance more tightly than can be done using expectation
alone. Even if a data structure performs well in expectation,
it may have a large number of poorly-performing operations
(see, for example, Lemma 15).

Two instances I1 and I2 of a data structure are in the same
state if they cannot be distinguished via any sequence of op-
erations on the data structure. The memory representation
of an instance I of a data structure is the bit representation
of I , including data, pointers, unused buffer space, and all
auxiliary parts of the structure, along with the physical ad-
dresses at which they are stored.

DEFINITION 4 (WEAK HISTORY INDEPENDENCE).
A data structure is weakly history independent (WHI) if,
for any two sequences of operations X and Y that take
the data structure from initialization to the same state,
the distribution over memory representations after X is
performed is identical to the distribution after Y .
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2.1 Building Blocks for History Independence
We use history-independent allocation [47] as a black box.
We also use the weak history-independent dynamic ar-
rays [36], rather than strongly independent dynamic ar-
rays [36, 47].3

Weakly history-independent dynamic arrays take constant
amortized time per update with high probability. The idea is
to maintain the following invariants. For array A storing n
elements: (1) the size |A| is uniformly and randomly chosen
from {n, . . . , 2n − 1}, and, (2) after each insert or delete
resize with probability Θ(1/|A|).

2.2 Performance Advantages of WHI over
SHI

We focus on weak history independence because of its per-
formance benefits. In particular, weak history independence
allows us to have high-probability guarantees in our data
structures.

Strong history independence for reversible data structures
requires a canonical representation [36].4 While canonical
representations are useful to have, maintaining them im-
poses strict limitations on the design and efficiency of the
data structure, as argued by several authors [23, 36]. More-
over, amortization, strong history independence, and high-
probability guarantees are largely incompatible.

In particular, SHI dynamic arrays cannot achieve the same
with high probability guarantees as WHI dynamic arrays.

OBSERVATION 1. No strongly-history-independent dy-
namic array can achieve o(N) amortized resize cost per in-
sert or delete with high probability.

PROOF. Consider a strongly-history-independent dy-
namic array that needs to be strictly greater than 50% full.
(The proof generalizes to arbitrary capacity constraints.) For
integer k, the adversary chooses a random ` ∈ {k, k +
1, . . . , 2k}. Then the adversary inserts up to ` elements into
the array, and then alternates between adding and removing
an element from the array, so that the array alternates be-
tween having ` and `+ 1 elements.

Given the capacity constraints on the array, there must be
at least two different canonical representations for the arrays
of sizes k, k + 1, . . . , 2k. Thus, there is a probability of at
least 1/k that the adversary forces an array resize (with cost
Ω(N)) on every insert and delete in the alternation phase.

Observe that k can be arbitrarily large. No matter how
long the data structure runs, it cannot avoid an Ω(N) resize
with probability greater than 1− 1/k.

Most importantly, this observation applies to PMAs as
well. A PMA with N elements at a given time is required
to have size Θ(N), so it generalizes the dynamic array. That
is, Observation 1 lets us conclude the following:

REMARK 1. A strongly history-independent PMA cannot
give any o(N) amortized with high probability operation
bounds. In contrast, our weakly history-independent PMA
has a O(log2N) bound (Theorem 1).

3Here it is assumed the contents of the dynamic array are stored
(internally) in a history independent manner—thus the size of the
array should not depend on the history of inserts and deletes.
4A data structure is reversible if the state-transition graph is
strongly connected [36], which is true of all structures in this paper
and most structures that support deletes.

Observation 1 similarly generalizes to other amortized data
structures with large worst-case costs. Thus, while strong
history independence provides stronger security guarantees,
it can come at a high performance cost.

2.3 Oblivious Adversary and Oblivious Ob-
server

Our performance analyses assume an oblivious adversary,
which determines the sequence of operations presented to
the data structure. The oblivious adversary cannot see the
outcomes of the data structure’s coin flips nor the current
state of memory. Said differently, the adversary is re-
quired to choose the entire sequence of operations before
the data structure even starts running. The oblivious adver-
sary is used for analyzing randomized structures such as skip
lists [53] or treaps [7].

Our (weak) history-independence analyses assume an
oblivious observer. The observer cannot control the input
sequence and does not see the data structure’s coin flips. The
observer gets to observe the data structure’s memory repre-
sentation once. We prove history independence by showing
that for every state of the data structure, the distribution of
memory representations is the same, regardless of how the
data structure got to that state.

3. HISTORY-INDEPENDENT PACKED
MEMORY ARRAY

This section gives a history-independent packed memory ar-
ray (PMA). A PMA is an Θ(N)-sized array that stores a se-
quence of elements in a user-specified order. There are up to
O(1) gaps between consecutive elements to support efficient
insertions and deletions.

A PMA with N elements supports the following:

• Query(i, j)—return the ith through jth elements of the
PMA, inclusive, where 0 ≤ i ≤ j < N .
• Insert(i, x)—insert x as the ith element of the PMA,

where 0 ≤ i ≤ N . Elements with rank i through N − 1
before the insert become the elements with i + 1 though
N after the insert.
• Delete(i)—delete the ith element of the PMA, where

0 ≤ i < N .

The PMA’s performance is given in Theorem 1.

3.1 High-Level Structure of HI PMA
Packed-memory arrays and sparse tables in the literature [14,
16–18, 38, 41, 66] are not history independent; the size of
the array, densities of the subarrays, and rebalances depend
strongly on the history.

We guarantee history independence for our PMA as fol-
lows. First, we ensure the size of the PMA is history inde-
pendent. We resize using the HI dynamic array allocation
strategy [36], as summarized in Section 2.1.

Next, we ensure that the N elements in the array of size
NS = Θ(N) are spread throughout the array according to a
distribution (given below) that is independent of past opera-
tions.

We maintain this history-independent layout recursively.
At the topmost level of recursion, we (implicitly) maintain
a set of size Θ(NS/ logNS), which we call the candidate
set. The candidate set consists of elements that have rank
N/2 ± Θ(NS/ logNS). We pick a random element from
the candidate set, which we call the balance element. If the
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balance element has rank r, then we recursively store the first
r−1 elements in the first half of the array and the remaining
N − r − 1 elements in the second half of the array.

In general, when we are spreading elements out within
a subarray A of the PMA, the candidate set has size
Θ(|A|/ logNS), and as before, the balance element is ran-
domly chosen from this set. The base case is when |A| =
Θ(logNS), at which point the elements are spread evenly
throughout A.

Thus, how the elements are spread throughout the PMA
depends only on the size NS (which is randomly chosen
as described in Section 2.1), the number of elements in the
PMAN , and the random choices of all the balance elements.

We maintain the balance elements in each candidate set
using a simple generalization of reservoir sampling [62] in
which there are deletes, described below. In this particular
instance of reservoir sampling, the size of a candidate set at
any given level of recursion stays the same, unless the size
of the entire PMA changes.

See Figure 1 for an illustration of our PMA. The top part
represents how each level of recursion partions the elements
into ranges. We show repeated elements across levels to aid
visualization; they are only stored once in the data structure
(at the bottom level). The division of elements into ranges at
each level helps in maintaining the balance elements, which
are stored in a separate structure.

3.2 Reservoir Sampling with Deletes
We first review a small tweak on standard reservoir sam-
pling [62], reservoir sampling with deletes, which we use
to help build the PMA.

Game: We have a dynamic set of elements. The objective
is to maintain a uniformly and randomly chosen leader of
the set, where each element in the set has equal probability
of being selected as leader. In other words, we are interested
in reservoir sampling with a reservoir of size 1.

Since the set is dynamic, at each step t, an element may be
added to or deleted from the set. The adversary is oblivious,
which means that the input sequence cannot depend on the
particular element chosen as leader.

We can maintain the leader using the following technique.
Let nt denote the number of elements in the set at time t
(including any newly-arrived element). Initially, if the set is
nonempty, we choose the leader uniformly at random. When
a new element y arrives, y becomes the leader with probabil-
ity 1/nt; otherwise the old leader remains. When an element
is deleted, there are two cases. If that element was the leader,
then we choose a new leader uniformly at random from the
remaining elements in the set. If the deleted element was not
the leader, the old leader remains.

LEMMA 5 ([62]). At any time step t, if there are nt el-
ements in the pool, then each element has a probability 1/nt
to be the leader.

3.3 Detailed Structure of the HI PMA
The size NS of our history-independent PMA is a random
variable that depends on the number of elements N stored
in the PMA (similar to dynamic arrays in Section 2.1). We
select parameter N̂ randomly from {N, . . . , 2N − 1}, and
NS is a function of N̂ (as described below).

We view the PMA as a complete binary tree of ranges,
where a range is a contiguous sequence of array slots. This
tree has height h = dlog N̂ − log log N̂e. The root is the
entire PMA and has depth 0. The leaves in the binary tree are

ranges comprising dCL log N̂e slots, and CL is a constant to
be determined later. Thus, the PMA has a total of NS =
2hdCL log N̂e ≤ (2CL + 1)N̂ = Θ(N) slots.

Consider a range R in the binary tree with left child R1
and right child R2. Recall from Section 3.1 that the balance
element bR of R is the first element of R2; all the elements
in R of smaller rank than bR are stored in R1. The values of
bR for each range/node are stored in a separate tree.

For each non-leaf rangeR at depth d, define the candidate
set MR to be the dc1N̂2−d/ log N̂e middle elements of R.
More precisely, if R holds ` elements, then we fix the size of
MR and set the first element of MR to be the 1 + d`/2e −
d|MR|/2eth element of R.

Our PMA is parameterized by a constant 0 < c1 <

1−6/ log N̂ .5 A larger c1 reduces the amortized update time
and increases the space. We requireCL ≥ 1+c1+6/ log N̂ .
The value of CL and c1 need not change as N̂ changes—
values such as c1 = 1/2 and CL = 2 will work for suffi-
ciently large N̂ (over 4096 in this case).

3.4 Dynamically Maintaining Balance Ele-
ments

As elements are inserted into or deleted from the PMA, the
candidate set MR for some range R could change. This
change might be caused by a newly inserted or deleted el-
ement that belongs to MR or just because insertions at one
end of R cause the median element of R to change.

As the candidate set MR changes, we maintain the invari-
ant that the balance element bR is selected uniformly and
randomly from MR. (In particular, this means that bR is
selected history-independently.) We use reservoir sampling
with deletes as the basis for maintaining this invariant.

INVARIANT 6. After each operation, for each range R,
balance element bR is uniformly distributed over the candi-
date set MR.

Whenever one element leaves their candidate set, another
one joins, since the candidate set size of each range is fixed
between rebuilds of the entire PMA. Thus, we describe how
to maintain the candidate set when exactly one element is
added, and one leaves.

If the balance element is the element leaving the candidate
set, we select the new balance element uniformly at random.
Otherwise, when a new element enters the candidate set, it
has a 1/|MR| chance of becoming the new balance element
(as in reservoir sampling).

When the balance element of a range changes, we rebuild
the entire range and all of its subranges. Rebuilding a range
of |R| slots can be done in Θ(|R|) time; see Lemma 10.

3.5 Detecting Changes to the Candidate Set
In order to determine how inserts and deletes affect the can-
didate set of a range R, we need to know the rank of the
element being inserted or deleted, the current candidate set
of R, and the rank of the current balance element of R.

The rank of the element being inserted and deleted is spec-
ified as part of the insert or delete operation.

To compute the other information, our PMA maintains an
auxiliary data structure containing the number of elements

5When N̂ ≤ 64, no such c1 exists. For such small N̂ , we use a
dynamic array instead.
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Figure 1: Illustration of our PMA showing the subdivisions of elements into ranges. In each range, the balance element is framed
and the candidate set is hatched. The actual array is represented in the bottom, where occupied slots are shaded. The candidate-set
size at any given level does not depend on the range. The rank of each balance element is stored in a separate tree.

`R in each range R. During an insert or delete, as we de-
scend the tree of ranges, we keep track of the ranks of the
first and last element in each range as follows. Suppose we
are at range R whose first element has rank x. If we descend
to R1, then we know the rank of the first element of R1 is
also x. If we descend to R2, then the rank of its first element
is x+ `R1 . Given the rank of the first element of a range and
the number of elements in that range, it is easy to compute its
candidate set. Note also that the rank of the balance element
of a range R whose first element has rank x is x+ `R1

.
We need to store `R for each range so that it can be

accessed efficiently, both in terms of operations and I/Os.
Since the ranges form a complete binary tree, we store the
numbers `R in a binary tree organized in a Van Emde Boas
layout (see [14,51]). We call this auxiliary data structure the
rank tree.

The Van Emde Boas layout is a deterministic, static,
cache-oblivious—and hence history-independent—layout of
a complete binary tree. It supports traversing a root-to-leaf
path inO(logN) operations andO(logB N) I/Os. Thus, the
rank tree is history independent.

Whenever the size of a range changes due to an insert or
delete, we update the corresponding entry in the rank tree.
Whenever we rebuild a range R in the PMA, we update all
entries of the rank tree corresponding to descendants of R.
Whenever we rebuild the entire PMA, we rebuild the entire
rank tree.

4. CORRECTNESS AND PERFORMANCE

4.1 Balance-Element Structural Lemmas
First, we show correctness—the data structure always finds
a slot for any element it needs to store.

LEMMA 7. At all times, the size of a range is larger than
the number of elements it contains.

PROOF. Consider a range at depth d. This range has
NS/2

d = 2h−ddCL log N̂e ≥ CLN̂/2
d slots. We will

show that the maximum number of elements it can contain
is smaller than this number of slots.

The number of elements in the range is at most half of
the elements in its parents range, plus half of the size of the

parent’s candidate set (rounding up). In other words, if S(d)
is the maximum number of elements in a range at depth d,
S(0) ≤ N̂ and

S(d) ≤ dS(d− 1)/2e+ dMR/2e

≤ dS(d− 1)/2e+
1

2

⌈
c1N̂

2d−1 log N̂

⌉
+

1

2

≤ S(d− 1)

2
+

c1N̂

2d log N̂
+

3

2
.

By induction,

S(d) ≤ N̂

2d
+

c1dN̂

2d log N̂
+ 3.

Since d ≤ log N̂ , and N̂/2d ≥ N̂/2h ≥ (log N̂)/2,

S(d) ≤ N̂

2d
(1 + c1) + 3 ≤ N̂

2d

(
1 + c1 +

6

log N̂

)
.

Since we chooseCL ≥ 1+c1+6/ log N̂ , we have S(d) ≤
CLN̂/2

d.

As Lemma 7 establishes, each leaf range in the PMA
(which has Θ(logN) slots) never fills up completely. Us-
ing a similar argument, it can be shown that each leaf also
contains Ω(logN) elements if c1 < 1 − 6/ log N̂ . Because
the elements are spread out evenly in the leaves, this implies
there are O(1) gaps between two consecutive elements.

LEMMA 8. If c1 < 1 − 6/ log N̂ , the leaves are always
constant-factor full. There is O(1) space between two con-
secutive elements in the array.

Next, we prove weak history independence. As mentioned
in Section 3.1, when we are spreading elements out within
a subarray A of the PMA, the balance element is randomly
chosen from the candidate set. The elements of A are re-
cursively split between its children according to this balance
element. The base case is when |A| = Θ(log N̂), at which
point the elements are spread evenly throughout A.
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Thus, how the elements are spread throughout the PMA
depends only on N̂ (and the related NS), the number of el-
ements in the PMA N , and the random choices of all the
balance elements. This immediately gives weak history-
independence, as formalized in the following lemma.

LEMMA 9. This PMA is weakly history independent.

PROOF. We show that the memory representation of the
PMA is based only on N and some randomness (in particu-
lar, the random choices made during balance element selec-
tion and the random choice of N̂ ).

Let the PMA contain a set of elements S of size N , with
a set of balance elements P . Then P partitions the elements
of S into leaf ranges.

Since the elements are evenly spaced in each leaf range,
the position of each element within the leaf is determined by
the number of elements in that leaf. Since S is partitioned
into leaf ranges by P , P determines the position of each ele-
ment in the PMA. Thus P , N̂ , andN determine the memory
representation of the data structure. By Invariant 6, P is se-
lected from a distribution based only on N and N̂ .

Thus, any two sequences of operationsX and Y that insert
S into the PMA result in the same distribution on P , and the
same distribution on memory representations.

4.2 Proving the Performance Bounds
We begin by bounding the cost of a rebalance. Then we
bound the total number of rebalances.

LEMMA 10. Rebuilding a range R containing |R| slots
takes O(|R|) RAM operations and O(|R|/B + 1) I/Os.

PROOF. The algorithm first recursively chooses the bal-
ance elements for all ranges contained in this range R and
updates them in the rank tree; this takes O(|R|) time and
O(|R|/B + logB |R|+ 1) = O(|R|/B + 1) I/Os. Then, all
elements in R are gathered, and inserted into the appropriate
leaf range using a sequence of linear scans.

Our goal is to bound the cost of our PMA operations.
Specifically, we want to show Theorem 11.

THEOREM 11. Consider k (not necessarily consecutive)
operations on a PMA during which its maximum size isNM ,
its minimum size is Ω(NM ), and k = Ω(NM ). The amor-
tized cost of these operations isO(log2NM ) with high prob-
ability with respect to k: in other words, these k operations
requireO(k log2NM ) total RAM operations with high prob-
ability.

Before proving this theorem, we need some supporting
lemmas and definitions.

DEFINITION 12. A rebuild that is not charged to a range
R is called a free rebuild. Free rebuilds come from two
sources: (1) they are rebuilds of an ancestor range (whose
cost is charged to the ancestor), or (2) they are triggered by
the interstitial operations between the nonconsecutive oper-
ations of Theorem 11.

We further categorize non-free rebuilds by their causes.
An out-of-bounds rebuild is a rebuild caused by the pivot
leaving the candidate set. A lottery rebuild is a rebuild
caused by deleting the pivot or by inserting into the can-
didate set an element that becomes a new pivot.

Gearing up to Lemma 13, we concentrate on the cost of
all rebalances at a single depth d. Let Md be the size of the
candidate set at depth d.

We give a lower bound on the probability that two out-
of-bounds rebuilds happen in quick succession. This lemma
holds regardless of the number of free and lottery rebuilds
that happen in between.

LEMMA 13. After any rebuild of a range R at depth d,
consider a sequence of t operations on R, for any t ∈
{1, . . . , bMd/2c}, with arbitrary free and lottery rebuilds
occurring during these operations. The probability p(t) that
no out-of-bounds rebuild happens during these t operations
is at least 1− 2t/Md.

PROOF. Let pi(t) be the probability that no out-of-bounds
rebuild happens in the first t time steps, given that exactly i
free and lottery rebuilds happen during the first t time steps.
We prove the lemma by induction on i.

Define the guard number as the number of elements be-
tween the pivot and the closest endpoint of the candidate set.

First, the base case: for any t, p0(t) is at least the proba-
bility that the guard number after a rebuild is larger than t.
Indeed, the balance element cannot be moved closer to an
endpoint of the candidate set by more than one element per
operation. As the pivot is sampled uniformly after any type
of rebuild, we have

p0(t) ≥ Pr [guard number > t] ≥ 1− 2t/Md.

Now, assume by induction that pi(t) ≥ 1 − 2t/Md and we
want to show pi+1(t) ≥ 1 − t/Md. Let t′ be the last time
step before the (i+ 1)st non-out-of-bounds rebuild.

The following conditions ensure that there are no out-of-
bounds rebuilds in the first t operations:

1. there is no out-of-bounds rebuild in the first t′ opera-
tions, and

2. there is no out-of-bounds rebuild in the subsequent t−
t′ operations.

These two events are independent since there is a fixed
(free or lottery) rebuild between them. The first occurs with
probability pi(t′) and the second with probability p0(t− t′).
Thus, we have

pi+1(t) ≥ pi(t′) p0(t− t′)
≥ (1− 2t′/Md) (1− 2(t− t′)/Md) ≥ 1− 2t/Md,

and the induction is complete.

DEFINITION 14. Consider an out-of-bounds rebuild of a
range R at depth d.

We call this rebuild a good out-of-bounds rebuild if R
has only free and lottery rebuilds for the next Md/4 opera-
tions.

By Lemma 13, an out-of-bounds rebuild is good with prob-
ability at least 1/2.

We are now ready to prove Theorem 11.
PROOF OF THEOREM 11. Consider the sequence of re-

builds of ranges at a given depth d. We analyze lottery
rebuilds and out-of-bounds rebuilds separately. Since vari-
ations in N̂ slightly change the candidate set size, let M
denote the smallest candidate-set size at depth d over the
k operations. However, since N = Θ(NM ) at all times,
M = Θ(|Md|).

We give a (weak) bound on k/M which helps show that
the high-probability bounds hold with respect to k.
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In particular,

k/M ≥ k logNM
NM

≥ k log k logNM
NM log k

= Ω(log k),

since k/ log k = Ω(NM/ logNM ) if k = Ω(NM ).
Each operation has probability at most 1/M of causing

a lottery rebuild. Thus, there are k/M lottery rebuilds in
expectation. Then using Chernoff bounds, the probability
that we have more than (1 + δ)k/M rebuilds is less than
e−δk/3M . Recall that k/M = Ω(log k). Substituting, there
are O(k/M) lottery rebuilds with high probability.

Now, we bound the out-of-bounds rebuilds. By the pi-
geonhole principle, there cannot be more than k/(M/4) +
2d = O(k/M) good out-of-bounds rebuilds (the second
term comes from the number of ranges at depth d).

We bound how many bad out-of-bounds rebuilds can hap-
pen before reaching this limit on good out-of-bounds re-
builds. Any out-of-bounds rebuild is good with probability
at least 1/2. Then after k/M = Ω(log k) out-of-bounds re-
builds, we obtain Θ(k/M) good out-of-bounds rebuilds with
high probability, again by Chernoff bounds. As we can only
getO(k/M) good rebuilds, we haveO(k/M) out-of-bounds
rebuilds in total.

Therefore, every k operations, there are O(k/M) out-of-
bounds and lottery rebuilds of ranges at depth d with high
probability. Each rebuild costs O(M logNM ) RAM opera-
tions by Lemma 10 (because that is the number of slots in a
range at depth d). Thus, the total rebuild cost for depth d is
O(k logNM ).

Having determined the cost of rebalancing at each depth,
we account for the total cost. The amortized rebalance cost,
summing over all h = O(logNM ) levels, is O(log2NM ).

Each resize costs O(NM ) and occurs with probability
O(1/NM ) after every insertion. Using Chernoff bounds,
there areO((k logNM )/NM ) = Ω(log k) resizes after k op-
erations with high probability, leading to an additional amor-
tized cost of O(logNM ).

Finally, each insert or delete requires extra bookkeeping:
we must find the appropriate leaf range to insert the element
by traversing the rank tree. This traversal takes O(logNM )
RAM operations, and rebuilding the leaf so that the elements
are still evenly spaced takes O(logNM ) RAM operations.

This gives a total of O(k log2NM ) total RAM operations
with high probability.

Using similar analysis, we can also bound the I/O per-
formance. Recall that rebalancing a range of size R takes
O(R/B + 1) I/Os, and traversing a tree in the Van Emde
Boas layout requires O(logB NM ) I/Os. Carrying these
terms through the above proof gives the desired bounds.

To complete the proof of Theorem 1, we need to extend
this analysis to handle the PMA changing size significantly.

PROOF OF THEOREM 1. We partition the k = Ω(N) op-
erations on the PMA into types based on the size of the
PMA. In particular, let N̂t be the value of N̂ during the tth
operation. Then operation t is of type 0 if N ≥ N̂t > N/2,
type 1 if N/2 ≥ N̂t > N/4, and type i if N/2i ≥ N̂t >
N/2i+1 for 0 ≤ i ≤ dlogNe.

We analyze each type of operations as a whole, and bound
its total cost, summing to O(k log2N) RAM operations in
total. Each type is analyzed using two cases.

First, consider a type i which has at least
√
N total opera-

tions. Then by Theorem 11, these operations take amortized
O(log2N) RAM operations with high probability.

Second, consider a type i which has less than
√
N op-

erations. We call the operations of these types small-type
operations. We show that the total cost of all small-type op-
erations is a lower-order term.

Since the PMA begins as empty, and each operation can
only insert one element, there are at leastN/2i+1 operations
of type i. Thus, each small-type operation t has N̂t ≤

√
N .

Then overall, a type which has less than
√
N operations

must operate on a PMA of size ≤
√
N . Thus, each type has

total cost O(N). Summing over the O(logN) such types,
we get a worst-case total cost of O(N logN) for small-type
operations; amortizing gives a cost of O(logN) RAM oper-
ations.

Thus the total amortized cost isO(log2N) with high prob-
ability with respect to N . The I/O cost to rebuild range R is
|R|/B by Lemma 10; carrying this term through the above
analysis, we obtain the desired I/O bounds.

4.3 Experimental Results
We implemented a normal PMA and our history-
independent PMA. We found that while there was approxi-
mately a factor of 7 overhead in the run time, the asymptotic
performance matched our analysis.

We also examined the number of element moves required
during an insert. Figure 2 shows the number of moves re-
quired divided by N log2N vs. the number of elements in-
serted. The linear nature of this data supports our theoretical
analysis.

These tests were run on a Dell server with an Intel Xeon
processor (E5-2450 @ 2.10GHz). In these tests, inserting
100 million random numbers took approximately 23 min-
utes. Additionally the space overhead ranged from 1.8 to 5
times the number of elements.
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Figure 2: Experimental results of runtime for random inserts
on normal and history-independent PMAs.

The history-independence of our PMA depends on the bal-
ance elements being uniformly distributed across the candi-
date set; see Lemma 5. To test this, we inserted values of
1-100,000 sequentially into a history-independent PMA and
recorded the position of the balance for each range within
this PMA where the candidate set size was eight or greater.
We did this test 10,000 times and used the χ2 goodness-of-
fit test to compare these balance elements with a uniform
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distribution. To ensure enough samples we only looked at
ranges where the expected count for each bucket was ten or
greater. This resulted in 148 p-values. If our null hypothesis,
that these balances are uniformly distributed, holds, these p-
values themselves should be uniformly distributed. Running
the χ2 goodness-of-fit test across these p-values showed a re-
sult consistent with data coming from a uniform distribution
(p=0.47, n=148). As a result we can say there is no statisti-
cally significant evidence of that our balance elements have
a deviation from a uniform distribution.

5. HISTORY-INDEPENDENT CACHE-
OBLIVIOUS B-TREE

In this section we prove Theorem 2, which establishes the
performance of our history-independent cache-oblivious B-
tree. This N -element data structure, must, without knowl-
edge of the block size B,
• insert or delete items with O((log2N)/B + logB N)

amortized I/Os with high probability,
• use O(N) space, and
• answer range queries containing k elements in
O(logB N + k/B) I/Os.
When B = Ω(logN log logN), which is reasonable on

today’s systems, log2N
B +logB N = O(logB N), so that our

history-independent cache-oblivious B-tree matches the I/O
complexity of a standard B-tree.

The requirements above are similar to those achieved by
our PMA. The key difference is that PMA items are searched
by rank (before being inserted, deleted, or completing a
range search) rather than value.

By slightly augmenting our PMA, we obtain a cache-
oblivious B-tree achieving the above bounds. We call our
data structure the augmented PMA.

The augmented PMA has an additional, static-topology
tree associated with it. Recall that our PMA has the sizes of
each range stored in a complete binary tree, in a Van Emde
Boas layout. We store an additional tree storing the values
of each balance element. The two trees are identically struc-
tured, and identically maintained. Thus, this leads to only
a constant factor increase in both space and running time.
To search (by value) in the augmented PMA, we traverse a
path in the new tree of balance-element values. This costs
O(logB N) I/Os and O(logN) operations. Once we have
found the element, we can determine its rank by traversing
the rank tree, summing the sizes of any left children each
time we go to a right child.

Once the rank of the element is known, we insert, delete,
or perform range queries as in the normal PMA, establishing
the desired bounds.

6. HISTORY-INDEPENDENT EXTERNAL-
MEMORY SKIP LIST

In this section we prove Theorem 3. We give a history-
independent external-memory skip list.

In-memory skip lists support updates and queries in
O(logN) time whp. The natural extension to external mem-
ory [1, 25, 26, 33] promotes elements with probability 1/B
rather than probability 1/2. We prove that for this exten-
sion, the high-probability I/O bounds are asymptotically no
better than those of an in-memory skip list run in external
memory (Lemma 15).

We build an external-memory skip list with good (i.e., B-
tree-like) high-probability bounds for searches, updates, and

range queries, while retaining the structure of the folklore
B-skip list as much as possible.

6.1 High-Level Structure of the HI External-
Memory Skip List

First, we describe why the folklore B-skip list fails to achieve
high-probability I/O bounds. Then, we present the approach
used in our skip list.

Golovin and others [1, 25, 26, 33] promote elements with
probability 1/B (rather than 1/2, as in the in-memory skip
list). Consider an array, a sequence of contiguous elements
at any level that have not been promoted to the next level
(i.e., lie between two promoted elements). These arrays can
have size O(B logN) whp, which is O(logN) times larger
than the expected length. When this list is embedded in an
array (analogous to the nodes in a B-tree), then a scan to
search for these elements costs O(logN) I/Os whp.

We change the promotion probability to 1/Bγ , where
1/2 < γ < 1 − log logB/ logB. Now, all arrays
have size O(Bγ logN) whp, so searches and updates take
O(Bγ logN/B) = O(logB N) I/Os whp.

While a promotion probability of 1/Bγ results in fast
searches and updates, it slows down range queries. If
we pack arrays at the leaf level (the leaf arrays) of the
skip list into disk blocks [33], then most disk blocks will
be underutilized, containing only Bγ elements on aver-
age. Thus, a range query returning k elements may require
O(logB N + k/Bγ) I/Os, which is worse than the target of
O(logB N + k/B) I/Os.

For efficient range queries, we pack multiple arrays into
disk blocks at the leaf level as follows. Contiguous arrays,
delimited by elements promoted twice, are packed together
into a leaf node. A leaf node is stored consecutively on disk;
see Figure 3.

The packing strategy described above permits some leaf
nodes to get too large, achieving size Θ(B2γ logN). If
we pack elements as densely as possible, then every new
insert would require rewriting the entire node at a cost of
O(B2γ−1 logN) I/Os, which is worse than Θ(logB N) I/Os.

Similar to PMAs and HI dynamic arrays [36], we leave
empty spaces between the elements in the leaves to support
efficient inserts. We do so in a way that maintains history
independence; see Invariant 16.

6.2 Detailed Structure of the HI External-
Memory Skip List

A skip list S is a series of linked lists {S0, S1, . . . , Sh},
where S0 ⊇ S1 ⊇ . . . ⊇ Sh. Let H = {0, 1, . . . , h} be
the levels of the skip list, and h the height of the skip list.
The base list S0 contains all the elements in the skip list; we
call level 0 the leaf level.

Each Si, for 0 < i ≤ h, stores a sorted subset of the
elements from Si−1, along with the special element front
to mark the beginning of the list; see Figure 3. The function
level : S0 → H determines the highest list that contains an
element x, that is, if level (x) = i then x ∈ Sj for all j ≤ i
and x /∈ Sk for i < k ≤ h.

The height of each element is determined randomly, ac-
cording to promotion probability p. Specifically, for i ∈
H − {0}, if an element is in Si−1, it is also in Si with prob-
ability p. Thus, level (x) of an element x is the number of
coin flips before we see a tail, when using a biased coin with
probability p of flipping a head.

Next, we show that the folklore B-skip list, which has a
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Figure 3: Illustration of a search path for element key 18 in the external skip list (B = 3 and p = 1/2).

promotion probability of 1/B, performs poorly for some el-
ements with high probability.

LEMMA 15. In a B-skip list with promotion probability
p = 1/B, there exist Ω(

√
NB) elements with search cost

Ω(log(N/B)) with high probability with respect to N/B.

For our history-independent external-memory skip list, we
choose promotion probability p = 1/Bγ , where 1/2 < γ ≤
1− log logB/ logB is a constant. Let 1/p = Bγ be integral
to simplify analysis. We parameterize our running times by
ε > 0, with γ = (ε+ 1)/2.

The parameter γ can be tuned—there is a trade-off be-
tween the cost of a range query and the worst-case cost of
insertion. Specifically, a range query returning k elements
has a cost of O( 1

ε logB N + k/B), while the worst-case in-
sert cost is O(Bε logN ) I/Os. The expected insert cost re-
mains O(logB N) I/Os for all allowed values of γ.

We now describe how to partition the elements into arrays
at nonleaf levels. We also describe how to pack the leaf ar-
rays into leaf nodes.

Partitioning Non-Leaf Levels. We partition the list Si
at each level i for 1 ≤ i ≤ h into arrays. The array at
level i starts with a promoted element, i.e., element x with
level (x) ≥ i + 1. It contains all elements up to (and not
including) the next promoted element. The size of an array
is the number of elements stored in it plus any empty slots.
We maintain these sorted arrays history independently [36].

Partitioning the Leaf Level. We store the leaf level com-
pactly to support I/O-efficient range queries. The leaf arrays
at the leaf level are packed into a leaf node. Formally, a leaf
node B is a set of contiguous leaf arrays starting at some el-
ement x that has been promoted twice, that is, level (x) ≥ 2.

We store the leaf arrays history independently (see Sec-
tion 2.1), with the following modification: even when a leaf
array has n elements with n ≤ Bγ elements, we maintain
its size ns ≥ Bγ . We call the extra ns − n array slots gaps.
This modification retains history independence.

INVARIANT 16. Let n be the number of elements in a leaf
array of total size ns then:
• If n ≤ Bγ , then ns is uniform in [Bγ , 2Bγ − 1].
• If n ≥ Bγ , then ns is uniform in [n, 2n− 1].

Searches, Insertions, and Deletions. Search is imple-
mented exactly as in a standard skip list: for an element y,

start at the top list Sh, and scan right till a value x > y is
reached, in which case, descend a level down and continue
till y is found or shown not to exist.

To insert or delete an element y, search for the leaf array
where y belongs and insert or delete it. This involves shift-
ing elements in the leaf array and causes an array resize with
probability O(1/Bγ) by Invariant 16. If a resize occurs, re-
build the entire leaf node containing the array.

When inserting y, determine level (y) = ` by tossing a
biased coin with probability of heads p. At levels 1 ≤ i <
`, y starts an array, splitting the existing array into two. If
` ≥ 2, y starts a leaf node, splitting the existing leaf node
into two.

When deleting y, at levels 1 ≤ i < `, merge the leaf array
that y started with its predecessor. If ` ≥ 2 then merge the
leaf node that y started with its predecessor.

6.3 History Independence of External-
Memory Skip List

The history independence of our external-memory skip list
follows immediately from the following facts:
• level (x) for each element x is generated randomly,
• the elements within an array appear in sorted order,
• the size of each array is chosen history-independently (by

Invariant 16 for leaf arrays and [36] for non-leaf arrays),
• within a leaf node, the leaf arrays are packed contiguously

in sorted order, and,
• each array is allocated in blocks of size Θ(B) history-

independently [47].

6.4 Performance Analysis
We bound the height of the external-memory skip list. The
proof is similar to standard skip lists.

LEMMA 17. An external-memory skip list with promo-
tion probability p has height h = O(log1/pN) whp.

PROOF. For any element x, the probability that its level
is more than O(log1/pN) is given by: Pr[level (x) ≥
c log1/pN ] ≤ pc log1/pN = 1/N c.

Applying the union bound we get, Pr[∀x, level (x) ≥
c log1/pN ] ≤ N(1/N c) = 1/N c−1.

Thus, the height of our external-memory skip list with p =
1/Bγ is O(logB N).
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Search. To analyze searches, we bound the size of the
arrays and leaf nodes.

An array contains elements between two consecutive pro-
moted elements. Thus, the size of an array is bounded by
the length of the longest sequence of tails, when flipping a
biased coin with Pr[head] = 1/Bγ , which is O(Bγ logN).

LEMMA 18. The number of I/Os required to perform a
search is O(logB N) with high probability.

PROOF. Similar to the backward analysis in standard skip
lists [53], examine the search path from bottom up start-
ing at the leaf level. Each element visited by the path was
either promoted and the search path came from the top,
or was not promoted and the search path came from the
left. The number of down moves is bounded by the height
h = c logB N (Lemma 17). At each level, the search path
traverses at most two arrays.

The total length of the arrays touched by the search
path is bounded by the number of coin flips required
to obtain c logB N heads, where Pr [head] = 1/Bγ .
We need O(Bγ logN) coin flips whp. Thus, the
number of I/Os during the search at nonleaf levels is
O(logN/B1−γ + logB N) = O(logB N) whp, since γ ≤
1− log logB/ logB. At the leaf level, the search scans one
leaf array, which costs O(Bγ logN/B) = O(logB N).

Insert. To bound the insert cost, we bound the cost of
rebuilding a leaf node. The size of a leaf node is the number
of elements stored in it plus the number of gaps.

The number of elements in a leaf node is bounded by the
length of the longest sequence of tails in N coin flips with
Pr [head] = p2 = 1/B2γ , which is O(B2γ logN) whp.

The number of gaps between any k consecutive leaf el-
ements can be shown by a Chernoff bound argument to
be O(k + Bγ logN). Thus, the size of a leaf node is
O(B2γ logN) whp. Rebuilding it costsO(B2γ logN/B) =
O(Bε logN) I/Os.

LEMMA 19. The cost of performing an insert or delete
operation is amortized O(logB N) I/Os whp, with a worst
case cost of O(Bε logN) I/Os whp.

PROOF. When an element y is inserted or deleted, the
splits and merges at levels 1 ≤ i < level (y) are dominated
by the search cost of O(logB N).

The cost of inserting in a leaf array is dominated by the
cost of rebuilding the leaf node: O(Bε logN) I/Os whp. The
rebuild occurs with probability O(1/Bγ). The amortized
I/O cost is then O(B2γ−1 logN/Bγ) = O(logN/B1−γ) =
O(logB N) in expectation and whp with respect to the num-
ber of operations, since γ ≤ 1− log logB/ logB.

Range Query. To analyze a range query on a range of size
k, we bound the number of leaf nodes across which the k
elements are spread. That is, we bound the number of heads
obtained on k biased coin flips with Pr[head] = 1/B2γ .

LEMMA 20. The number of leaf nodes across which k
consecutive leaf elements are stored is O( 1

ε logB N + k/B)
with high probability.

LEMMA 21. A range query returning k elements costs
O( 1

ε logB N + k/B) I/Os with high probability.

PROOF. We break the analysis into several cases depend-
ing on the source of the cost.

• If the k consecutive elements fit in a single leaf node and
there are no gaps, then the size of each such leaf array
is O(Bγ logN) whp. Thus, O(Bγ logN/B + k/B) =
O(logB N + k/B) I/Os suffice.
• If the k consecutive elements span across arrays with gaps.

The sum of sizes of the gaps between these elements is
O(k + Bγ logN). Thus, a range query takes O(k/B +
Bγ logN/B) = O(logB N + k/B) I/Os.
• If the k consecutive elements span several leaf nodes, by

Lemma 20 they spanO(k/B+ 1
ε logB N) leaf nodes. Ev-

ery time the range query scan crosses a leaf node bound-
ary, we incur an I/O to bring in the next leaf node, which
requires O(k/B + 1

ε logB N) I/Os.
Thus, overall a range query scanning k consecutive elements
takes O( 1

ε logB N + k/B).

Space. Finally, we bound the space used.

LEMMA 22. The external skip list on N elements re-
quires Θ(N) space with high probability.

PROOF. The non leaf levels of the external skip list store
Θ(N) elements with only constant factor space. At the leaf
level, the number of gaps between N elements is O(N +
Bγ logN) = Θ(N) whp.

Lemmas 18, 19, 21, and 22 prove Theorem 3.

7. CONCLUSION
We show that adding history independence to some external-
memory data structures can come at low cost. We focus
on history-independent indexing structures, alternatives to
the traditional B-tree, the primary indexing structure used in
databases. We give HI PMAs and cache-oblivious B-trees
with the same asymptotic time and space bounds as their
non-HI counterparts. We give a HI skip list that performs
even better than the non-HI B-skip list because the bounds
are given with high probability rather than in expectation.
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