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Abstract

For words of lengtm, generated by independent geometric random variables, we consider the average
and variance of the number of distinct valuedditers) that occur in the wordVe then gneralise this to
thenumber of values which occur at ledstimes in the word.

(© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

We consider wordsi Xz . . . X With lettersx; € {1, 2, ...}. The ldteri occurs with (gometric)
probability pg—! wherep + q = 1, and the letters are considered to be independent, so that
X1X2 . .. Xn appears with probabilityp/q)"gXt++*n,

The combinatorics of geoetric random variables has gained importance because of
applications in computer sciee. We mention just two areaskiplists [3,1319 and
probabilistic counting [4,8].

Same of the previous studies relating to combinatorics of geometric random variables are
as follows. In L5 the number of left-to-right maxima was investigated in the modelvofds
(stings) a3 ...an, where tle ldtersa € N are independently generated according to the
geometric distribution. H.-K. Hwang and his collaborators obtained further results about this
limiting behaviour in P]. The two parameters ‘value’ and ‘position’ of thi¢h left-to-right
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maximum for geometric random variables were considered in a subsequent pHp&ther
combinatorial questions have been considel&ly,16,17).

In the paper, we address the following question: How many different letters appear in words
of length n, generated by geometric random variables? For this parameigr e derive
expectation and variance. Throughout this paper we use the following notafior:

. a’
L=1logQ,n* =n(Q —1), xk := Z”T'k fork € Z, k # 0. Also, y denotes Euler’s constant.

Theorem 1. The number of distinct letters in a word of length n is

1
E(dh) ~ I0gg N+ 1~ +10go(Q — 1) —  + e (logg ). (1)
where
1 .
dE(X) 1= —T > T(= ™™,
ks£0

Theorem 2. The varance for a word of length n is
V(dn) ~ logg 2 + év (logg n),

where
dy(X) =8 (X + IOgQ 2) — (),

is a periodic fluctuation with mean zero.

We then geeralise this questiorsdollows: How many letters appear at ledistimes, where
b > 1is a degjn parameter.

Theorem 3. The expected number of digits oagng at least btimes in a word is

1 1

where
1 3 X (b — xj)
L o T o

8g, (X) =
Theorem 4. The variance of this quantity is
2 (=1)tP-1 /4 p—1\ /i—-1
(b)y ~ z )
V@™ IogQ2+L§i(Qi—l) i b—1
221 Zj) <—2j) 1
2a()E( ) e
131 (25, .
EZE< j >2 + &, (Iogg N*),

wheredy, (x) is a periodic fluctuation with mean zero.

="t

2
+_ - -
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In the asymptotic formulae that we derive, there appear ubiquitous periodic oscillations, due
to poles of certain functions at= yx, k € Z, k # 0. They are usuly tiny, but play an essential
role especiallyn the variance.

2. Thedistinct value problem

When looking at the number of distinct values in a word, we can make use of exponential
generating functions. The total number of letters in the word is representechyk represents
the number of distinct values appearing in that word. Our function of interest is the probability
generating function

Fizu) = [[@+u@® —1) @)

i>1

where the coefficient oﬁ,uk is the probability that a word of length hask distinct values. If
letteri occurs at least once, then this Wik accommodated by the presence ofttlie front of
the expressior(eZpd_1 — 1) which represents all non-empty ‘sets’ of letiewhich occur in the
word. The problem of the letters appearing at different places in the word is overcome by the use
of the exponential generating function.

Note that substituting = 1 into this function gives &(since all probabilities sum to 1), which
is to be expected because thiduees it to a generating functiorhase coefficients represent the
probability that a word of lengtim has no restctions.

Because of the frequent use of Rice's methawtighout this paper, we state the following
lemma before beginning the proof of Theorenb11b,21].

Lemmal. Let C be a curve surrounding the poinfs 2, ..., n in the complex lane, and let
f (z) be analytic insid&. Then

nn 1
> () 04100 =5 [Imat @z

k=1

(=) 1n! _I'(n+ DI (-2
z2(z—=1)---(z—n) TI'n+1-2) '

By extending the contour of integration, it tigrout that under suitable growth conditions
(see p]) the asympotic expansion of our alternating sum is given by

[n; z] =

Z Reg[n; z] f (2)) + smaller order terms

where the sum is taken over all poles different from.1, n. Poles tlat lie more to the left lead
to smaller terms in the asymptotic expansion.

3. Theexpected value

Let d, be the number of distinct values in a word of lengthand letE(d,) represent the
expected value of this quantity. Sincé][

E(dh) = n![2"] %F(z, ol
u=1
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and
l‘[(1+ uePd — 1)) — l‘[ezpd — PHPa+PA+) — 2
iZO u=1 iZO
we have
E(dh) = n![z" ]— ]‘[(1+ u(ePd — 1))
izo u=1
- n'[z”]ezz =iz ) (& - Py
i>0 i>0
=Y a-a-pd" = ZZ( -(1) (—1>kpkq‘k)
i>0 =0i>0

_Z(n)(_l)kl kquk i( )( 1)k P
= Kk
o1k = 1-q
However, we cannot easily see what the number of distinct values are from this form. To get a
better idea we approximate this alternating sum using Rice’s method, by melagmofa 1
The first pole we will deal with is at = 0, and thus we can approximate our alternating sum

(i.e., the expected value) by calculating the residue-at0. We have

1— —1\z —1)Z

fpo 19D Q-1

1-Q2 Qz-1
and from this we can see that there is a double pole &t 0 in [n; z] f (z). We thus expand
everyhing to two terms. Fstly, we have 15]:

— (=) 1n! N 11 H
[’Z]_z(z—l)m(z—n) _E( +zhh),

whereH, = >, % is then-th harmonic number. We exparfdz) to get:

1 L
f(@) ~ =1 +2logQ-1) (1— 27)

To calculate the residue at= 0 we onsider the coefficient af 1 in [n; z] f (z) asn — oo,
1 1 zL y
-1 = il _ _Z=) z —1) - =
[z ]Z(1+an)ZL(1+zIog(Q 1) (1 2) logg n + 3 +10gp(Q —1) 5

wherey is Euler’s constant ahtheharmonic numbers are approximated byiegy asn — co.
But f(2) = — 3 L” also has simple poles at= yx = %7 k € Z, k # 0. By letting
& =12Z— Xk, We have

Q-1 (Q-1n

f(Z)Z_Qz_l__Qs+Xk_1
. (Q-DFQ-DX Q- 1
=S =@ -5y ).
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Since
(Q—1)¢ g°109(Q-1) 1 1
T Q-1 edQ_1  T1yeL_1 &L
we have that th resdue of f (2) is [e*l](—i) = —%. From [1], we can see that
[n; xkl = %{T;? ~ I'(=xn*,
and

(Q — DXknXk = gllognxc — g2krilogon®

which means that we can write the small fluctuationsggogg n*), with

1 .
SEX) = = ) T (= x0e™.
k=0

This concludes the proof dtheorem1 H

Remark. It is of interest to compare this result with the mean of thmed value in a
geometrically distributed sample of letters, denoted byE(M;), due to Szpankowski and

Rego p2:
y 1

Ignoring the small fluctuating terms we see that the expegtedber of missing valuds the
range 1 p toE(My) is asymptotically given by

E(Mn) — E(dn) ~ 1 —109q(Q —1). (4)
Observe that a® goes from 1 taxo, (4) goes monotonically from infinity to 0. Thus(d,) —

E(Myn) asq = Q~1 — 0, which is intuitively clear, since the limiting word is just the sequence
111... 1 with only one distinct value.

Our expected value is sandwiched betwéghand the number of consecutive non-empty
boxes (equivalently the first value which does not occur in our sample). Theqc:as%is dealt
with in [4], where this value was given as

E(cn) ~ log, n + log, ¢ + P(log, n)

for ¢ = 0.77351. .. and a periodic functio (x) with period 1 and amplitude bounded by 0
We calculate the constants numerically for the cgse= 2 to s2e by how much each expected
value dffers from the next. The constants which determine the ord@iog) < E(d,) < E(Mp)
are (respectively, to four decimal places).3705; 0.3327; 1.3327.

4. Thevariance

The formula for variance from a generating function@p [

2

V = n![2"] % F(z,u)| +E(dy) — E?(dpn). (5)
u=1
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Using thegenerating function irf2) we can calculate the first term of the variance as follows:
Let fi(z, u) := 1+ u(ePd — 1), then

=n! 32l_lf(zu)

naz
n[z']—sF(z,u
[l 5F @ W

u=1 i>1 U1
Iz ]E iz u)2§ 3UJ éz(zu;“ . %:(kz(zu)) + .11 fi(z u>2 BUZJ (JZ (Zu)“) 1
u=
_ iz ]2e2§ezsz; Lenoa
"2 (& - (1-pa) _ 2(1-pd) 4 2(1-pal—pq))
j <k
= 22(11— 1 pah)" — (1 - pd)" + (L - pg’ — pgH™.

j<k

This quantity can be split up (preserving convergence) as follows in order to be dealt with in two
parts:

=2 [1-1-pgH"]
u=1 j<k

+2) 11— pa’ — pg)" — (1 — pa))".
j<k

n 82
n[z']—F(zu
(25 FEw

The reason for this is that now the summand of the first sum is independgandfcan be dealt
with separately from the secosdm which rguires a slightly different approach. The factor of
two is temporarily ignored.

Part (i): Since 1— (1 — pg)" is independent ofj

Zkz — (1= pgH" =D k[1-(1- pq)]—Zk[ an( )( pg) ]

k>0 j=0 k>0 k>0 i=1

- —(Q-1)
- i=l(in)(_ b (Q —12°

Sof(z) = ?((?Q’l)z and we have a triple pole at= 0 as[n; z] has a simple pole ang((??_’—ll));

2_1)2
has a double pole. To use Rice’s method we expand to three terms ardd|get [

()" n! 1 LHZ+ H?
~ =1+ zH + 2
z2z—1)---(z—n) z 2Pt 2 ’

and

(Q—-17 1 Z1og?(Q — 1) 52212
_(QZ— 172 Y <1+ZI09(Q— 1+ f) <1— zL + > > .
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We now brieflynote that as — oo [20, page 187]

72

HZ2 ~ (logn +y)? =log?n + 2y logn+ y? and H® ~ 5

The residue for the triple pole at= 0 is

2 2 _ 2 2
[2*1123—1L2 <1+z|og(Q_1)+M) <1—z|_+ 5221 >

2 12
HZ + HP)

X (1+ZHn+ZZ 2

logh(Q-1) 5 H24+HP l0go(Q —DHn  H
Q n n Q n n
= 2 T2 T oge(Q - 1) 4 = T T
2 T2t oz 90Q-D+ L L
~}Iogzn+zlog N+ loge(Q — 1) logg n — log n+}logz(Q—1)

2 Q L Q Q Q Q 2 Q

y 5 2 y2 y
—lo —D+<1lo D+ —4 ——+—2— - (asn — o0).

Now f (z) also has double poles at= xx, k # 0. By lettinge = z — xk, we can use results
from the expected value to get

~(Q = 11(Q - 1) ( (Q—l)s)
Qo (=2 ),
Qon—nz QD g

We have alkeady expanded the fraction to three terms, so we merely note the expansion to two
terms as

f(2) =

(Q-1° -1
o _12 ezt telg@—-1Hd—eb).
Lastly,
A=1[n; xkl = w

I'n+1-2
needs to be expanded to 2 terms aromed yix. Using a Tajor expansion we can write
I(=2) ~ T'(=x) = I'(=x)@Z = xx) = T'(—=xx) L = ¥ (=xx)(Z = xx))
and similarly
I'm+1-2)~I'n+1-x)A -y +1-x)(Z— xK)-
This means that with the same substitution as befoee £ — k), we have

I'(—xx)
A~T )———————[1— (- 1- .
(n+ )F(n+1—xk)[ Y(—xxe+y(n+ XK)E]
We gpproximate the) function by [, page 259]
1— Xk
n

Y(n+1— xx) ~logn+1— xk) = Iog(n (1+ >> ~logn ash — oo,
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so that
I'(—x1)
A F(n+1)m [1—1//(—Xk)8+8logn]
_ _TO+D L
= LX) T 1= [1— ¥ (=xKe +¢elogn]

~ I'(—x)n™ [1— ¥ (—x)e + elogn]  asn — oc.

If we put this together with the expansion fdr(z) obtained above we get

-1
AT@) ~ (Q= D™ 5 T(—xin™ [1 = ¥ (— xe + e logn]
x (1+elog(Q — 1)(1—¢eL) ash — oo,
and by rewriting(Q — 1)%knk as ex10gn” — 27ikl0go " \ye get the esidue from the poles at
Z= Xk,k?éotobe
> &R Iy 2 [~ ¥ (=10 +logn + log(Q — 1) — L]

k0

-1 - * Y (—xk)
_ Téez iklogg n I'(—xk) [Ioan— 3 +IogQ(Q—1)—1]

So the total result for part (i) is:

1 1
~5 logg n + IogQ N+ 10go(Q — 1) logg n — logg n + 5 logdh(Q — 1)
2 2

5
~10gg(Q 1) + £ 100(Q— 1)+ 15+ 155 + 55 — 1
__ZeanklogQ I'(—xx) |:|0an_ ¥ ( LXk) +|OgQ(Q 1)_1i| (6)

k=0

Part (ii): Applying the binomial theorem gives

n
. K . B n it Nl . K
Yot pal — pg" = @—pah" =" (1) (<1 Y tepa))' — (pa’ + pefy']

j<k i=1 j<k
(sincetermi = 0 iszero). This is now written in the correct form for Rice’s method to be used,
where (form =k — j)

f@ =-Y [(pah* - (pq’ + pg*)?]
j<k

. . pZ
=2 (pa)? Y 11— @+ g™ = - 7

i=0 m>1
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We now &pandg(z) aroundz = 0

2 2 m

m>1 m>1 2
1 myk —1)ktlgmk 2
oy y D ><q>_z_ (Z( )k(q))+”'
m>1k>1 m>1 k>1
(-1 qk (- 1)k+J gt
=z), K __ZZ : 1_qk+j+"’
k>1 k>1j>1

Now, these sums can be evaluated by Mathtca to give constants, for examplegif= 1/2
then

_1k k
w= Y C S~ 0868877 and
k>1 1-q
1k+1+2 K+j
pm oy T e = 0116506
k>lj>l 1_q )

Sog(z) can be written ag(z) = @z + fz2 + - - -. Thus when we use Rice’s method we have a
simplepole atz = 0. Consequently we expand everything to one term, giving

-1
bt 1 Q-1 1
2z—1)---(z—n) y4 Qz-1 zL

andg(z) ~ «z. The resilue forz = 0 is thus[z 1] (—%) (— ZlL) az = 2. But— (82 D* also has

simplepoles atz = yi, k # 0. To see hovg(z) behaves aroungk, we realrange

90w = Y [1- @ +g™*] = ZZ(Xk)(q) Z( )Q'l—l

m>1 m>11>1

This is the contribution of(z). The residue of — (Q L% was cealt with in the expected value
section, we again let = z — xk, andget:

Q- 1
Q-1 Tl

and so the residue i&. As in part (i), (Q — 1)[n; k] ~ I'(—x)€” k%% " and so the
contribution from the simple poles at= yx is

——Zg(mr( xo e Klogen”
k0
which means that the total result for part (ii) is
>l - pal — pa)" — (1 - pg)" = = — = Zg(Xk)F( x)eri 0%,
j<k L L%

To conpute the variance we also negld and
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E2(dq) ~ Iogé N+ 2logg n e (logg N*) + 2logg nlogo(Q — 1)
2y IogQ n 1 vy y2
= =2 _logon+-— L+
+ Gon+5 -1+

L2
2y lo 1
—10go(Q — 1) + %Q) +1og3,(Q — 1)

+ 21095 (Q — 1)de(logg n*) — Se(logg n*)
2y8e(logs N*)
n YOE LQQ

We can now put all of these together (rememberhmeg part (i) and part (i) must include a factor
of two) to get

+ 82 (logg n*).

32
V(dw) = N2z 5F@E W) +Ed) - E?(dh)

u=1

1 7T2 20[ 2 H *
~ L = e g2riklogg n* e
262 L LZ (=10

k=0
X [IogQ n— I//(I__Xk) +log(Q - 1) - 1}
2 i "
T Z g I'(— x)emikloge ™ 8e(logg n*) — 2logg nde (logg n*)
k20
. «  2yde(logg n®) .
— 210go(Q — 1)se(logg N*) + 8 (logg N*) — 2~ - 9 _ 5Z(logq n*).

We can split up thé%(logQ n*) term into a constant term (the mean of the fluctuating function)
and a fluctuating function of mean zero. Let (s [

82(x) = [62]0 + Se(X) = i + L o Z (= thl +S x)
£ OToERY =512 %L Ln@-p TE
where SE(X) = éZk;éoz#o)#kF(—XJ)F(—Xk,j)eZ”ikX. Then we lave (for « =

l k k

( 1)hfl .
V(dn) ~ logq 2+ * 2 Z QD S+ 8v (logg n¥)

= IogQ 2+ (3\/(IogQ n ),

where
Bv(X) = ZF(— yePhrix [M ~ g0 + Z] —8e(0)
k;éO L L
= SE(X +10gq 2) — S (X), @)

with () = — Y121 (1) 1ﬂ—|q|. Appendix Aprovidesthe simplifications fo7). This cncludes
the poof of Theorem2 H
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Extreme cases of

For intelest we look at the extreme casesih g(z) = az+ fz2+---.Asq — 0,«a — 0.
If g — 1,then by lettingg = ™!, we can considet — 0. Rewriting, we have the quantity

eftk

(—D)X B (—Dpkt o1
2 k 1—e—tk__k; k  ek—1

k>1

This can be found in the appendix df(], and by calling itg(t) we get the following result from
that paper, which makes use of Mellin transforms to get:

_gpy= T g2t 2"
*=9 T2 2t )

This identity holds for O< t < 272. We are iterested in wht happens as— 0. Since
(_1)k—1 1
t) =— —_
I =-> ——gx 1

k>1

it can be seen thag(z%z) — 0 ast — 0, and thus the last term in the expressiondas small
enough to be insignificant. The remaining three terms provide an approximatonéarg = 1
wheret = log %.

5. General case: Number of lettersoccurring at least b times

We now geeralise to the case where we consider the number of values in a word which appear
at least times. Our probability generating function needs to be extended to

b-1 N ) b-1 ik
Fp(z,u) := l_[ (Z% +u (ezpd B Z%)) .

i>=0 \k=0

6. Theexpected value (general case)

& (ezpd S (Zpk?“k)
k=0

—_ nir7n
u—l niz ]Z ezpqg

(1—bf( ) @—pd)" k(pq>k)

9
E(dP) = ni[z"] %Fb(z, u)

I
| M

;( ;( )(—pqiﬂ)—;ii( )Z:( )(—pqiﬂ(pqi)k

n—k i+k
pJ+

E ()t SR

j=1 k=1 j=0




1070 M. Archibald et al. / European Journal of Combinatorics 27 (2006) 1059-1081

The first term is our original expected valuee(j.for the number of distinct values) and Rice’s
method (with the contour of integration surrounding Q, n) can be used for the inner sum of

the second ternfhe function fx(z) = (g—zjﬁ— has a pole at = —k, and fore = z+k we have

Q-D° _
Q°—-1 ¢logQ

i.e., theresidue is%. The ontribution of[N; z] (whereN = n — k) aroundz = —k is

ase — 0

fk(2) ~

—1)"k1(n - k)! —Kk)!(k — 1)!
N o Vi et I L LSt 1
=D,k +1) - () n!
and so the total residue 8=9"&=D! Thiscan now be substituted in as the inner sum, giving
b—1 b
N\ (= K)Ik — 1! 1
2. (k) Ln! Z Lk L oo

k=1

Lastly, we need to calculate the fluctuations contributed by the simple pdesat x|, | € Z,
j # 0. We havefy(z) = (g—zjﬁ— and lets = z+k — xj, then

e+
fk(z) w (Q 1)XJ (Q

QI = Q-

as in the previous expected value, so the reS|du@|sl)XJ . The ontribution of[N; z] around
z=—k+ xjis[1]

1
~(Q-DX L (8)

F'k=xpI'n=k+1) TI'k=xpDI'(n—k+1)
In—k+1+k—yxp) rn+1-xj)
~ Tk— -, ©)

[(n—k —k+xj] =

Again we can writg Q — 1)%inti = €¥"11°% ™" For each value ok we have a entribution of
% 2 jz0 (K= xj yn—Ke2TiiX We sum tlis to get

b-1 .1 B
=37 Pk — xj)nKe2iix
k;(k) L ; X

which we can subtract from thiefunction in the casé = 1. Thus as1 — oo,

_ B b-1
25 [re s 8 () e on
j k=1

—1b 1ok
=T gk T
AR g ) 1 SO x;)
k=0 j#£0 L i#0 Xj I'(b)
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Thus the expected number of digits occurring at l&a#hes in a word is
1 1
Ed{P) ~ logg n + Z +logo(Q—1) - 5~ Hb-1+ 8, (logg N*),

wheresg, () = £ X0 5— ezmjx F([E’(b’)“) This @ncludes the proof dfheorem 3 |

7. Thevariance (general case)

The corresponding second factorial momen{Shcan be calculated as follows (bearing in
mind that all double partial derivatives with respecttare 0, as each termis linear with respect

to u),
b-1 Sod )k . b-1 od K
(ezpd _ kzo %) (ezmJ _ kzo( pd) >
=2¢ ) — =

32
—Fp(z,u
02 b(Z, U)

. P ezpd gzpd
b—1
_ez(lquj) <1+...+%)
4 g#1-pd—pal) <1+~'+ %) <1+”'+ %)} '
(10)

Terms one and threeof (10) can be combined to give ¥;.j[€® — g?(1-pah)

b-1
A+---+ (Z(pq )], with coefficients:

23] [1— (L= pg))" — -~ (bf 1) (gL - qu)“—“’—l)]

j=0

Now this can be splitupinto 2. j [1— (1 - pg))"] (which is known from(6), and

_ ; i1 jyn-1_, . jy\b—1 jyn—(b—1)
ZZJ[HPQ(l pg)"t + +<b 1)(IOQ) (11— pa)) }

j>=0
A typical tamis:
~2(7) > ipaa - pah=
j=0
h+s

Ny o= (N (pa)
:-2(S)r§<h)( )hm (N:=n-—s),

for which there is a double pole at= —s. Again Rice’s method can be used. Let= z + s.

Then we have to expand around- 0 to two terms:
(pe*s  (p9* Q-1

a- qz+S)2 - 1- qe)z - (Qf — 1)2

1
f(2) = ~82L2 1+elog(Q—1) —el).
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The Taylor expansion dfiN; z] aroundz = —s (i.e., arounct = 0) to two places (this can be
done by Mathematica) is
n—s)!(s—1)!
[n—s; —s] ~ ¢[1+ ey(N+1) —ey(9)].

n!
We get theresidue by multiplying these two expansions:
n—9s)!s—1! 1

o FGOQ(Q —D-L+y(+1—y(s). (11)
We also have double polesat- s = xx, k € Z,k # 0. Lete = z+ s — xk, then
_(Q-DpFs o (Q—DF
&= gm—p = Ve
Expanding the fraction to two terms, we have
—1)¢ 1 L\?
((QQS = 1))2 ~ 531+ elog(Q - 1) <1— %) .

The[N; z] factor N = n — s) expanded to two terms arouzd= xx — s (i.e., around = 0) is
I'n—s+1)I'(s— xx)

[N —s; xk — sl ~ RGESE) [I+ey(M—x+D—ey(s—x0l

We put these together (including the fact@ — 1)) to get the esidue asymptotic to(— oo)
L ris— LN =SHD okritogg e 1y _ (s —
= 00— & (I0g(Q — 1) — L + 9 (N — xk + 1) — ¥(S — xx)).

whichholds for allk # 0, and can be summed over ki« 0 to get

LS-i—].)i _ kri logg n*
O+ D LZI(;F(S xK) e 106o
x(10g(Q—1) — L+ ¢ —xk+1 — ¥(s— x).

This result can be combined wiffh1) to give the total resiues for a typical term as
2
“si2 (l0g(Q -1 —L+y(n+1)—v(9)
2 i x
—57 2 s = 00e#™ %M log(Q = 1) — L+ (0 — s+ 1) — ¥(5 = x)).

k0

Since we haveb — 1 of these termsduded together, we can now sum them to get (notice that
Yv(n+ 1) ~lognandy(n — xkx + 1) ~ logn)

2
—E (lOgQ(Q — 1) -1 + |OgQ n) Hb_l +
(12)

ASE cri g V(s — 10
_Eggéf(s—x;()ez iloggn (logQ(Q—l)—lJrIoan—f).

The known part was dealt with in the classical variance discussion (part (i)), so the total residue
for terms one and three is twi¢6) + (12). The log, n terms in the two sums ok from this
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expression can be rewritten as (séepage 174])

b—1
1
TloanZez“”' logg n* |:F( XK) +Z F(s— Xk)j| = 2logg n 8k, (logg N,
k#0

and so we have the total residue for terms one and three as

2

Z&+|OQQ(Q 1)+ = +|Oan+_|09Qn
72 2
+F+6L —210go(Q — 1) +210gq(Q — 1) logg n

2
+ — IogQ(Q —1)—2loggn — —y + 2logg Nég, (109g n*)

+= ZF( x)ezm"ogon*[w Xk) —logo(Q — 1)+1}
k;éO

2bl

L Z I'(s— y)e? %™ (IogQ(Q H-1- LS: Xk)) ,

S0

Terms twaand fourof (10) can also be combined and regrouped, giving

2y [<1+ et M) (&1-pd —pal) _ eZ(l—pq'))} (= P)

oG (b—1)!
(1-pq'—pa’) '(Zpd)b_l)(  + (quj)b lﬂ
+2052|<:j [ez <1+ +o_pr) (zpd + b1
=R

Dealing with P:Let a typical term of the first bracket be

Po=2 Y [(sz) (e21-pd —pal) _ 21~ pq>)}

0<l<j

We simgify the expression to extract coefficients more easily:

n[z"|Ps = 2 Z nlz"=— '
0<l<j S ico k!

=23 () (pdr*@- pd - pa)"* - €~ pd)"9)

0<l<j

2(pd)® 3 (zk(l— pd — pgh*  Z*@- pq')")
k!

(n=k+s) fornlarge

n—s

= 2(2) Z <n ; S) (—1)k2 pS g+l Z((l+qh)k 1 h=j-1

k=0 1>0 h>1
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N

=2(2)Z<k>( D s+k2(<1+q“)k 1

k=0
(whereN :=n —s).

We can now use Rice's method. The only poles are at —s andz = —s + x (here we use
variables instead ok). In the first case we have (see expected value)

(Q— 13tz N 1
Qstz -1 L(s+2)’

fs(z) =

making the residue%. The (exact) contribution of quantityN; z] aroundz = —s was
also calculated above as beifiy — s; —s] = =2U=D! and the ontribution of H(2) =
She1 (A+gMZ—1)is

H=s) =Y (@+d) - =) (Z (i +is_ 1) (—q' - 1)

h>1 h>1 \i>0
[ +s > ,
=2 (-1
i>1 ( QI -
The total residue from the pole at= —s is thus
1(n-9s)!(s—1!
— T H(-
L n! =9,

and by substituting this back into the expression for coefficienB cdnd sunming ons, we get

b1 hy 1(n—s9)(s— 1! , =11 /i+s—1
> 2( )¢ n! H(_S)Z_Z( V'3 127( i1 >

s=0 : i>1 s=0
_ Z (-1 (i +b—1>
L& -1 i '

For thepoles occurring at = xx — s we havefs(z) ~ (Q — 1)k }L from (8), and[N; z] around
Z=xk —Sis(9)
I'n—s+1)

N—s; xk — Sl ~ I'(S — x)N*™* 5 ~ I'(s — yr)n*
[ Xk — $] (8 — xx) (8 — xx) Tt 1

Again we need to calculate the contribution of the new qualiiy), which isexadly the same
as before, only witts — xx in place ofs, i.e.,

i +5— q—1 o1
H(Xk—S)=Z(I+SiXk )(—D'Qi—_l,

i>1
to get he fluctuating residues

I'mM—s+1)1

AT TR DR CEPOLICTEE)

k0
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which can also be substituted into the expression for the coefficiesarfid summed, so that
altogether we have that the coefficients for the quamigre

B /ieb-1\ 2911
Z;'<Ez'—)1)<l+i ) T25 2SI Ie o=, (19
1>

Dealing with R:A typical tam is

)

Ry=2 Y ei-pd—pah 2P 2Pt

| !
o s! t!

with0<s<b-1and1<t <b— 1. We follow the same procedure as oy

n! . .
17N — _ I jyn—s—t I\s it
n![z"]Rst 20;J (h—s_osu &t PA AT (pA) (R
(n=k+s+1)
P L i( ) K perst L+ g
= D' —x ) 9 1+0a)
(n—s—Dsit! &~ 1 st &y
(h:=j—I,N:=n—-s—1).
The residue fromgz—éf%t atz = —s —tis 1. The quantity [N;z] atz = —s — t is

(n=s=DUSH=D! and forHi(2) := Y .1 a™ (1 + qM)? we have

H(-s— 1) = Zq“‘Z('+S+t 1)(—q“)‘

h>1 i>0
[ +s+t ) i1
= (D) -
;;( G

This means that the residue from the pole at —s —t is

M—s—t)!(s+t—1)!

Ln! Ht(_s_t)a
and so altogether we have

b-1b-1 n! (n—s—tl(s+t—1)!
Zz(n—s—t)'s‘t' Ln! Hi(=s—1)

s=0t=1
2 =1 1 (i+t—-1)! /i+b+t—1

= — -1 - . 14

L>0 )ZQH'—l tli! < t4i ) (14)

Summing the fluctuating residues from the poles at gaehyx — s — t gives

1 ; % I'n—s—-t+1
= grilogon Py +s+t)—— T H —s—1),
3 k%éo (—xk ) TRCEEN) t(xk )
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so that altogether we have

—1b—1
Zzzml_ ZekalogQ F(—x+s+0n" " HiGx —s—1)
s=0t=1
2 b—1b-1
ZEZZS'tVZekaIogQ I'(=xk +s+OHi(xk —s—1), (15)
s=0t=1 k=0

which means that the coefficients Rfare(14) + (15).
All these results can be added together to get the variance in the general case. Further
cancellations are dealt with isppendix B Finally the variance can be written as

(=11 /i4b—1\/i-1
'°gQ2+LZ|<Qi—1>( i )(b_1>

i>1
2 bt 2j
_EX:: ()h>0< >Qh+1_l
2~ DM 1R 1 (2],
i ()7 e monam Y

5 -1 I'(b—xi0) I'(o—xk—j) K
wherese, 00 = {2 Xicso Xj 0.2k %Ity 7o 1 €N

Svp(X) = Z I (—x)e?<mt 09 [@ —logo(Q—1) + 1}

L&
2 2 bfl il .
+ 28, (X) — )/5Eb(X) T Z ZF(S_ Xk)ez 7i logg N
e
x <|09Q(Q -H-1- M) — 8, ()

Z . ZeZk”' 290" I'(s — xi0H (xx — 9)
k0

L2
Ho-10E,(X) — 2 10gq(Q — 1) 8g,(X)

L

o b-1b— il

— miloggn* s+t)H —s—t
+LSE:0 E: o kE;éO (—xk + s+ t)Hi (xk )-

This concludes the proof @fheorem 4 W
8. The mean and variancefor large b

To examinehis variance result @s— oo, we can use results fron®] which stte that

134 (21) 2 log2
——>) | )29 = + Ly +O(b3)
L ;21 ] L V7
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and (for anye > 0)

2211 /2] 3 -2j 1
L&2j\j h ) Qhi—1

h>0

m 4 b
le|og(1+ Q™ +0 <<7Q(1+ e s> )

2 (_1)h,1 Lo < 4 >b
=——) —F — ¢ ,
L& h@ -1 QL+ Q12

whose big© term is exponentially small as — oo. By conallting [7], we can deduce that

_1\i+tb—1 /; _ i b
EZ( 1) ("H_) 1)(| 1)20 ( 4 _8)
L&Zi@Q@ -\ i b—1 QL+Q 12
foranye > 0 and s likewise exponentially small. Thuslks> oo, the ®nstantirthe asymptotic

expansion of the variance is

4

1 2 _3
ﬁb 2+ 0O(b 2)+O<(7Q(1+Q—1)2 -

b
s) ) + 8y, (Iogg N*) = O(b™2),
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Appendix A

The Fourier serieé7) we want to simplify can be written &g (X) = Zk?éo ae? kX where

2 —xk) + 1
ac=2r(—p0 | L2 g0 = 2 S reex e,
L L L2
j#0,7#k
with go) = = Y121 (7) ﬁ We onsult [L8] to do this, adl start byusing the formula
I'(—x+D(=D'= x =1 +1)--- (x = DxI'(—X) to rewrite

D' - x0)
F — = — _—
(—xx09(xk) |§21: |!QI -1

so that we have

2 Y(=x)+r] 2 ED'TA - x0
ak_fp(_x“)[ L } L& Q-1

1
—3 2 T xe.
j#0,#k
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We now onsiderthe function P]

IFr@or'(=x-2

FO=L— 51—
with integral
1 %+ioo
l1 = — F(z)dz,
2ri I-ioco

chosen because of the residues produced wherottitewr of integration is shifted. We evaluate
this integral twice, by shifting the contour first left and then right. We start by shifting the line
left to R(z) = —%. Simplepoles occur ak = —j for all j € Z \ {0}, with adouble pole at
z=0.

L
ReqF. 0) = =y I'(=x) — 51 (=x) = (=) ¥ (= xw).

L
ResgF, —xk) = —I'(—x ¥ (—xx) + EF(—XK) =y (—xx),
ResF, —xj) = I'(=xx)I'(—xk + xj) forall j #0,#k.

So
1 —%-Hoo
h=5— F@dz— 2 (=0 (v + ¥ (=x) + > T(=x)T (=xk + xj)-
Tl J_1 ico :
2 j#0,#k
and we use;— = —1 — —i— and a change of variabie:= z + xk to get
211 = —Ll2 = 2I'(—x1)(y + ¥ (—xx) + Z I(=xdI'(—xx + xj) (17)

j#0,7k
wherel; is an integral of Mellin—Barnes typ@3, p. 286ff]

1 7%+i00 1 7%‘“00
I'Qr'(—xk —2dz= — I'(z— xx)I'(—2)dz.

o =— -
2ri —1-ico 2ri —3ico

To evaluatel, we shift the ontour line to the right to get negative residues. The poles we
consider are at = xk, a simplepole with residue-I"(—xx) and atz = I, | € N, with residues

PN
Y0 G0 = x0). So

(-1
l2 = —I'(=x0+ ) —— T = x0
1>0 :
Xk -
= —T'(—xx) + I'(—xx) l; ( | ) = I'(—xk)(e¥KI092 _ 1),

I
On the other hand, if we writé; = i ff:';o L%dz and shift the contour of
integration to the right, we collect the negative residuds=ati, 2, 3, ... as
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=D'Id =y
=L . 18
Sl T e o

Since we novhave two expressions fdog, which muste equal, we can combiri@7) and(18),
and cancel all terms except, leaving us with

Sy (X) = ——ZF( X (€T10%2 — 1)@ = 5e (x + logg 2) — 8 (%),
ks£0

which, forQ = 2iség(x + 1) — §g(X), which iszero sinceSg (x) has period 118].

Appendix B

The variance in the general case can be expressed as

1 72 2yHp1 HZ,

VO = St T 2
b— i .
Ly | (-1l f(i+b-1
LZZ I;I(Qi—l)( i )
1 (+t—-D!/i+b+t—1
T g(_)ZQ”i—l T < t4i )

-2 IogQ(Q — 1) 8, (logg n*)

5 b-lb-
T Xc;;s'tvéc:)eblkb% F(=xx+s+DH(xx—s—1
S=i

+25g,(logg n*) + Z I'(—xx)e?miklogg [I/’(%Xk) —logo(Q-1) + 1}
L iz
2 2 b—l )
-1 y 8g,(Iogg N*) — T Z Zp(s_ )ik loggn

" k0

x (IogQ(Q —1)—-1-— u> — 6, (logg )

2 b-1 1 2
T2 o 2 @R I(s — Y9 H (i~ 9) + T Hy-15g,logg 1.
s=0 > k70

We can cancel terms and express

(=)' [i+b-1
ZI(Q‘—1)< i >

i>1

1 ((+t—D!'/i+b+t—1
N S Tl (A

|>0

as
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28t 1 (t—l)!(b+t—1>
EZ(Qt—l) t! t
1 i+t=-D! /i+b+t-1
iy S (Y
=S| b+t—1\ 2% (—Dit1/ i i+b—1
t(Q‘—l)( t )fzo;oi—li_(i—tx i )
1 b+t—1
tQ‘—l)( t )
i—t ; ; _ _
Z( 1 1(.| ><|+p 1)_[t21] t1 }<t+b 1)
= I>lQ'—ll i —t i Qi—1t t
e« Dt < i ><i+b—1)
= ,1I(Q'—1) i

2 (=D i -1 i1
‘Eizli@i—l)( i ><b—1>'

We then usette analytic expression for harmonic numbklks= vy (n + 1) + y to rewrite

(=

N

”MH HM

2%
L

+
I_|I\J

o

2
L

2b ws 2 211 2 21 2811 2
=N == —H,— == —H—— = — 2L Hp_
2 1 2
— ) %) 14
= TzzHoa+ Ho- )‘—H 17 2ot
1 2 1 2 2)/
= 21 Moy~ o
2
which means we cancel the term%m Lzl. It is aloo necessary to look at

the term 82 (Ioan*) whose mean is non-zero. In9][ the guare of §g (X) =

Zk?é e2TIX () (b Xk ™ 1) is split into two parts — a constant (the mean of the square
of the function) and the remaining periodic function of period 1 and mean zero. We write

82, () = [6Z, 1o + 3, (%),

where
7 1 231 (2] ~2] 1
8210 = -5 + — —logg 2+~ Y = —
Pelo =gzt 19%eT T 2 Zj(j) <h>Qh+J—1
j=1 h>0
h—1 b—1 : 2
2y T AL (), Moy
Lh>1h(Q -1 Lj:lZJ i L

andSEb(x) is peridic function with mean zero. We thus have the result for the variance as in
(16).
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